Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaraoğlan, Aslan Deniz
dc.contributor.authorBayhan, Günhan Miraç
dc.date.accessioned2019-10-21T08:09:38Z
dc.date.available2019-10-21T08:09:38Z
dc.date.issued2014en_US
dc.identifier.issn17485037
dc.identifier.urihttps://hdl.handle.net/20.500.12462/9068
dc.description.abstractIn this study, we present a new regression control chart which is able to detect the mean shift in a production process. This chart is designed for autocorrelated process observations having a linearly increasing trend. Existing approaches may individually cope with autocorrelated and trending data. The proposed chart requires the identification of trend stationary first order autoregressive (trend AR(1)) model as a suitable time series model for process observations. For a wide range of possible shifts and autocorrelation coefficients, performance of the proposed chart is evaluated by simulation experiments. Average correct signal rate and average run length are used as performance criteria.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1504/IJISE.2014.058838en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAutocorrelationen_US
dc.subjectLinear Trenden_US
dc.subjectQuality Controlen_US
dc.subjectSPCen_US
dc.subjectStatistical Process Controlen_US
dc.subjectTrend AR(1)en_US
dc.titleA regression control chart for autocorrelated processesen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Industrial and Systems Engineeringen_US
dc.contributor.departmentMühendislik Mimarlık Fakültesien_US
dc.contributor.authorID0000-0002-3292-5919en_US
dc.identifier.volume16en_US
dc.identifier.issue2en_US
dc.identifier.startpage238en_US
dc.identifier.endpage256en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster