Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKüçükkoç, İbrahim
dc.contributor.authorZhang, David Z
dc.date.accessioned2019-10-17T08:32:04Z
dc.date.available2019-10-17T08:32:04Z
dc.date.issued2016en_US
dc.identifier.issn0268-3768
dc.identifier.issn1433-3015
dc.identifier.urihttps://doi.org/ 10.1007/s00170-015-7320-y
dc.identifier.urihttps://hdl.handle.net/20.500.12462/7990
dc.descriptionKüçükkoç, İbrahim (Balikesir Author)en_US
dc.description.abstractDifferent from a large number of existing studies in the literature, this paper addresses two important issues in managing production lines, the problems of line balancing and model sequencing, concurrently. A novel hybrid agent-based ant colony optimization-genetic algorithm approach is developed for the solution of mixed model parallel two-sided assembly line balancing and sequencing problem. The existing agent-based ant colony optimization algorithm is enhanced with the integration of a new genetic algorithm-based model sequencing mechanism. The algorithm provides ants the opportunity of selecting a random behavior among ten heuristics commonly used in the line balancing domain. A numerical example is given to illustrate the solution building procedure of the algorithm and the evolution of the chromosomes. The performance of the developed algorithm is also assessed through test problems and analysis of their solutions through a statistical test, namely paired sample t test. In accordance with the test results, it is statistically proven that the integrated genetic algorithm-based model sequencing engine helps agent-based ant colony optimization algorithm robustly find significantly better quality solutions.en_US
dc.language.isoengen_US
dc.publisherSpringer London Ltden_US
dc.relation.isversionof10.1007/s00170-015-7320-yen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectAssembly Line Balancingen_US
dc.subjectModel Sequencingen_US
dc.subjectMixed Model Parallel Two-Sided Assembly Linesen_US
dc.subjectAgent-Based Ant Colony Optimizationen_US
dc.subjectGenetic Algorithmen_US
dc.subjectArtificial Intelligenceen_US
dc.titleIntegrating ant colony and genetic algorithms in the balancing and scheduling of complex assembly linesen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Advanced Manufacturing Technologyen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorID0000-0001-6042-6896en_US
dc.contributor.authorID0000-0002-1561-0923en_US
dc.identifier.volume82en_US
dc.identifier.issue1-4en_US
dc.identifier.startpage265en_US
dc.identifier.endpage285en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster