Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorArslan, Kadri
dc.contributor.authorBulca, Betül
dc.contributor.authorKılıç, Bengü Bayram
dc.contributor.authorKim, Young Ho
dc.contributor.authorÖztürk, Günay
dc.date.accessioned2019-05-16T19:38:17Z
dc.date.available2019-05-16T19:38:17Z
dc.date.issued2011
dc.identifier.issn1300-0098
dc.identifier.urihttps://hdl.handle.net/20.500.12462/4803
dc.descriptionKılıç, Bengü Bayram (Balikesir Author)en_US
dc.description.abstractIn the present article we study the rotational embedded surfaces in $Bbb{E}^4$ . The rotational embedded surface was first studied by G. Ganchev and V. Milousheva as a surface in $Bbb{E}^4$ . The Otsuki (non-round) sphere in $Bbb{E}^4$ is one of the special examples of this surface. Finally, we give necessary and sufficient conditions for the flat Ganchev-Milousheva rotational surface to have pointwise 1-type Gauss map.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.subjectRotation Surfaceen_US
dc.subjectGauss Mapen_US
dc.subjectFinite Typeen_US
dc.subjectPointwise 1-Typeen_US
dc.titleRotational embeddings in $Bbb{E}^4$ with pointwise 1-type gauss mapen_US
dc.typearticleen_US
dc.relation.journalTurkish Journal of Mathematicsen_US
dc.contributor.departmentFen-Edebiyat Fakültesien_US
dc.identifier.volume35en_US
dc.identifier.issue3en_US
dc.identifier.startpage493en_US
dc.identifier.endpage499en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster