Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkgün, Ramazan
dc.date.accessioned2024-01-24T13:33:37Z
dc.date.available2024-01-24T13:33:37Z
dc.date.issued2022en_US
dc.identifier.issn2651-2939
dc.identifier.urihttps://doi.org/10.33205/cma.1167459
dc.identifier.urihttps://hdl.handle.net/20.500.12462/13836
dc.description.abstractPresent work contains a method to obtain Jackson and Stechkin type inequalities of approximation by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on R := (−∞, +∞). To do this, we employ a transference theorem which produce norm inequalities starting from norm inequalities in C(R), the class of bounded uniformly continuous functions defined on R. Let B ⊆ R be a measurable set, p (x) : B → [1, ∞) be a measurable function. For the class of functions f belonging to variable exponent Lebesgue spaces Lp(x) (B), we consider difference operator (I − Tδ) r f (·) under the condition that p(x) satisfies the log-Hölder continuity condition and 1 ≤ ess infx∈B p(x), ess supx∈B p(x) < ∞, where I is the identity operator, r ∈ N := {1, 2, 3, · · · }, δ ≥ 0 and (∗) Tδf (x) = 1 δ Z δ 0 f (x + t) dt, x ∈ R, T0 ≡ I, is the forward Steklov operator. It is proved that (∗∗) k(I − Tδ) r fkp(·) is a suitable measure of smoothness for functions in Lp(x) (B), where k·kp(·) is Luxemburg norm in Lp(x) (B) . We obtain main properties of difference operator k(I − Tδ) r fkp(·) in Lp(x) (B) . We give proof of direct and inverse theorems of approximation by IFFD in Lp(x) (R) .en_US
dc.language.isoengen_US
dc.publisherTuncer Acaren_US
dc.relation.isversionof10.33205/cma.1167459en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVariable Exponent Lebesgue Spaceen_US
dc.subjectOne Sided Steklov Operatoren_US
dc.subjectIntegral Functions of Finite Degreeen_US
dc.subjectBest Approximationen_US
dc.subjectDirect Theoremen_US
dc.subjectInverse Theoremen_US
dc.subjectModulus of Smoothnessen_US
dc.subjectMarchaud Inequalityen_US
dc.subjectK-functionalen_US
dc.titleExponential approximation in variable exponent Lebesgue spaces on the real lineen_US
dc.typearticleen_US
dc.relation.journalConstructive Mathematical Analysisen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0001-6247-8518en_US
dc.identifier.volume5en_US
dc.identifier.issue4en_US
dc.identifier.startpage214en_US
dc.identifier.endpage237en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster