dc.contributor.author | Akgün, Ramazan | |
dc.date.accessioned | 2024-01-24T13:33:37Z | |
dc.date.available | 2024-01-24T13:33:37Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 2651-2939 | |
dc.identifier.uri | https://doi.org/10.33205/cma.1167459 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/13836 | |
dc.description.abstract | Present work contains a method to obtain Jackson and Stechkin type inequalities of approximation
by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on
R := (−∞, +∞). To do this, we employ a transference theorem which produce norm inequalities starting from
norm inequalities in C(R), the class of bounded uniformly continuous functions defined on R. Let B ⊆ R be a
measurable set, p (x) : B → [1, ∞) be a measurable function. For the class of functions f belonging to variable
exponent Lebesgue spaces Lp(x)
(B), we consider difference operator (I − Tδ)
r
f (·) under the condition that p(x)
satisfies the log-Hölder continuity condition and 1 ≤ ess infx∈B p(x), ess supx∈B p(x) < ∞, where I is the identity
operator, r ∈ N := {1, 2, 3, · · · }, δ ≥ 0 and
(∗) Tδf (x) = 1
δ
Z δ
0
f (x + t) dt, x ∈ R, T0 ≡ I,
is the forward Steklov operator. It is proved that
(∗∗) k(I − Tδ)
r
fkp(·)
is a suitable measure of smoothness for functions in Lp(x)
(B), where k·kp(·)
is Luxemburg norm in Lp(x)
(B) . We
obtain main properties of difference operator k(I − Tδ)
r
fkp(·)
in Lp(x)
(B) . We give proof of direct and inverse
theorems of approximation by IFFD in Lp(x)
(R) . | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Tuncer Acar | en_US |
dc.relation.isversionof | 10.33205/cma.1167459 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Variable Exponent Lebesgue Space | en_US |
dc.subject | One Sided Steklov Operator | en_US |
dc.subject | Integral Functions of Finite Degree | en_US |
dc.subject | Best Approximation | en_US |
dc.subject | Direct Theorem | en_US |
dc.subject | Inverse Theorem | en_US |
dc.subject | Modulus of Smoothness | en_US |
dc.subject | Marchaud Inequality | en_US |
dc.subject | K-functional | en_US |
dc.title | Exponential approximation in variable exponent Lebesgue spaces on the real line | en_US |
dc.type | article | en_US |
dc.relation.journal | Constructive Mathematical Analysis | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0001-6247-8518 | en_US |
dc.identifier.volume | 5 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 214 | en_US |
dc.identifier.endpage | 237 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |