Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSheergojri, Aadil Rashid
dc.contributor.authorIqbal, Pervaiz
dc.contributor.authorAgarwal, Praveen
dc.contributor.authorÖzdemir, Necati
dc.date.accessioned2024-01-08T07:47:35Z
dc.date.available2024-01-08T07:47:35Z
dc.date.issued2022en_US
dc.identifier.issn2146-0957 / 2146-5703
dc.identifier.urihttps://doi.org/10.11121/ijocta.2022.1208
dc.identifier.urihttps://hdl.handle.net/20.500.12462/13738
dc.descriptionÖzdemir, Necati (Balikesir Author)en_US
dc.description.abstractFor treating cancer, tumor growth models have shown to be a valuable re-source, whether they are used to develop therapeutic methods paired with process control or to simulate and evaluate treatment processes. In addition, a fuzzy mathematical model is a tool for monitoring the influences of various elements and creating behavioral assessments. It has been designed to decrease the ambiguity of model parameters to obtain a reliable mathematical tumor development model by employing fuzzy logic.The tumor Gompertz equation is shown in an imprecise environment in this study. It considers the whole cancer cell population to be vague at any given time, with the possibility distribution function determined by the initial tumor cell population, tumor net popula-tion rate, and carrying capacity of the tumor. Moreover, this work provides information on the expected tumor cell population in the maximum period. This study examines fuzzy tumor growth modeling insights based on fuzziness to reduce tumor uncertainty and achieve a degree of realism. Finally, numeri-cal simulations are utilized to show the significant conclusions of the proposed study.en_US
dc.language.isoengen_US
dc.publisherRamazan Yamanen_US
dc.relation.isversionof10.11121/ijocta.2022.1208en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectTumor Growth Modelingen_US
dc.subjectFuzzy Setsen_US
dc.subjectGompertz Modelen_US
dc.subjectPossibility Distribution Functionen_US
dc.titleUncertainty-based Gompertz growth model for tumor population and its numerical analysisen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Optimization and Control-Theories & Applications-IJOCTAen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0002-7483-8709en_US
dc.contributor.authorID0000-0002-3013-7206en_US
dc.contributor.authorID0000-0001-7556-8942en_US
dc.contributor.authorID0000-0002-6339-1868en_US
dc.identifier.volume12en_US
dc.identifier.issue2en_US
dc.identifier.startpage137en_US
dc.identifier.endpage150en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess