Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorArslan, Kadri
dc.contributor.authorBulca, Betül
dc.contributor.authorBayram, Bengü Kılıç
dc.contributor.authorUgail, Hassan
dc.contributor.authorÖztürk, Günay
dc.date.accessioned2019-11-08T07:00:20Z
dc.date.available2019-11-08T07:00:20Z
dc.date.issued2009en_US
dc.identifier.isbn978-076953791-7
dc.identifier.urihttps://hdl.handle.net/20.500.12462/9596
dc.description.abstractIn the present study we consider spherical product surfaces X = α⊗β of two 2D curves in E3. We prove that if a spherical product surface patch X = α⊗β has vanishing Gaussian curvature K (i.e. a flat surface) then either α or β is a straight line. Further, we prove that if α(u) is a straight line and β(v) is a 2D curve then the spherical product is a non-minimal and flat surface. We also prove that if β(v) is a straight line passing through origin and α(u) is any 2D curve (which is not a line) then the spherical product is both minimal and flat. We also give some examples of spherical product surface patches with potential applications to visual cyberworlds.en_US
dc.description.sponsorshipIEEE Computer Societyen_US
dc.language.isoengen_US
dc.relation.isversionof10.1109/CW.2009.64en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFunction Based Geometry Modellingen_US
dc.subjectMinimal Surfacesen_US
dc.subjectSpherical Product Surfaceen_US
dc.titleOn spherical product surfaces in E3en_US
dc.typeconferenceObjecten_US
dc.relation.journal2009 International Conference on CyberWorlds, CW '09en_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.identifier.startpage132en_US
dc.identifier.endpage137en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster