Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖzdemir, Necati
dc.contributor.authorKaradeniz, Derya
dc.contributor.authorİskender, Beyza Billur
dc.date.accessioned2019-10-21T10:15:41Z
dc.date.available2019-10-21T10:15:41Z
dc.date.issued2009en_US
dc.identifier.issn0375-9601
dc.identifier.issn1873-2429
dc.identifier.urihttps://doi.org/10.1016/j.physleta.2008.11.019
dc.identifier.urihttps://hdl.handle.net/20.500.12462/9093
dc.description.abstractIn this work, Fractional Optimal Control Problem (FOCP) of a Distributed system is investigated in cylindrical coordinates. Axis-symmetry naturally arises in the problem formulation. The fractional time derivative is described in the Riemann-Liouville (RL) sense. The performance index of a FOCP is considered as a function of state and control variables and system dynamics are given as a Partial Fractional Differential Equation (PFDE). The method of separation of variables is used to find the Solution of the problem. Eigenfunctions are used to eliminate the terms containing spice parameters and to define the problem in terms of a set of generalized state and control variables. For numerical computations, Grunwald-Letnikov (GL) approach is used. A time-invariant example is considered to demonstrate the effectiveness of the formulation. The comparison of analytical and numerical Solutions is given using simulation results and also it can be seen that analytical and numerical results converge each other. In addition, simulation results for different Values of order of derivative, time discretizations and eigenfunctions are analyzed. (C) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Bven_US
dc.relation.isversionof10.1016/j.physleta.2008.11.019en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional Optimal Controlen_US
dc.subjectAxis-Symmetryen_US
dc.subjectRiemann-Liouville Fractional Derivativeen_US
dc.subjectGrunwald-Letnikov Approachen_US
dc.subjectCylindrical Coordinatesen_US
dc.titleFractional optimal control problem of a distributed system in cylindrical coordinatesen_US
dc.typearticleen_US
dc.relation.journalPhysics Letters, Section A: General, Atomic and Solid State Physicsen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.identifier.volume373en_US
dc.identifier.issue2en_US
dc.identifier.startpage221en_US
dc.identifier.endpage226en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster