Twitter topic modeling for breaking news detection
Özet
Social media platforms like Twitter have become increasingly popular for the dissemination and discussion of current events. Twitter makes it possible for people to share stories that they find interesting with their followers, and write updates on what is happening around them. In this paper we attempt to use topic models of tweets in real time to identify breaking news. Two different methods, Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Process (HDP) are tested with each tweet in the training corpus as a document by itself, as well as with all the tweets of a unique user regarded as one document. This second approach emulates Author-Topic modeling (AT-modeling). The evaluation of methods relies on manual scoring of the accuracy of the modeling by volunteered participants. The experiments indicate topic modeling on tweets in real-time is not suitable for detecting breaking news by itself, but may be useful in analyzing and describing news tweets.