Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorErsoy, Alevtina
dc.contributor.authorKoç, Emine Rabia
dc.contributor.authorŞahin, Şemsettin
dc.contributor.authorDüzgün, Ülkühan
dc.contributor.authorAcar, Burcu
dc.contributor.authorİlhan, Atilla
dc.date.accessioned2019-10-17T11:17:05Z
dc.date.available2019-10-17T11:17:05Z
dc.date.issued2014en_US
dc.identifier.issn1463-1741
dc.identifier.issneISSN: 1998-4030
dc.identifier.urihttps://doi.org/10.4103/1463-1741.127849
dc.identifier.urihttps://hdl.handle.net/20.500.12462/8554
dc.descriptionKoç, Emine Rabia (Balikesir Author)en_US
dc.description.abstractThe problem of noise has recently gained more attention as it has become an integral part of our daily lives. However, its influence has yet to be fully elucidated. Other than being an unpleasant stimulus, noise may cause health disorders through annoyance and stress, including oxidative stress. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, may possess antioxidant properties. Based on rat models, our project investigates the effect of rosuvastatin on noise-induced oxidative stress in the brain tissue. Thirty-two male Wistar albino rats were used. The rats were divided into four groups: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage, and control. After the data had been collected, oxidant and antioxidant parameters were analyzed in the cerebral cortex, brain stem, and cerebellum. Results indicated that superoxide dismutase values were significantly decreased in the cerebral cortex, while malondialdehyde values in the brainstem and cerebellum were significantly increased in the group with only noise exposure. Superoxide dismutase values in the brainstem were significantly increased, but nitric oxide values in the cerebellum and brainstem and malondialdehyde values in the cerebellum and cerebral cortex were significantly decreased in the group where only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased superoxide dismutase values in the cerebral cortex and brainstem, but significantly reduced malondialdehyde values in the brain stem. Consequently, our data show that brain tissue was affected by oxidative stress due to continued exposure to noise. This noise-induced stress decreases with rosuvastatin therapy.en_US
dc.description.sponsorshipScientific Research Fund of Fatih Universityen_US
dc.language.isoengen_US
dc.publisherMedknow Publications & Media Pvt Ltden_US
dc.relation.isversionof10.4103/1463-1741.127849en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBrainen_US
dc.subjectNoiseen_US
dc.subjectOxidant/Antioxidant Parametersen_US
dc.subjectOxidative Stressen_US
dc.subjectRosuvastatinen_US
dc.titlePossible effects of rosuvastatin on noise-induced oxidative stress in rat brainen_US
dc.typearticleen_US
dc.relation.journalNoise & Healthen_US
dc.contributor.departmentTıp Fakültesien_US
dc.identifier.volume16en_US
dc.identifier.issue68en_US
dc.identifier.startpage18en_US
dc.identifier.endpage25en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster