dc.contributor.author | Özgür, Cihan | |
dc.contributor.author | Murathan, Cenizhan | |
dc.date.accessioned | 2019-10-17T10:45:24Z | |
dc.date.available | 2019-10-17T10:45:24Z | |
dc.date.issued | 2008 | en_US |
dc.identifier.issn | 1736-6046 | |
dc.identifier.issn | 1736-7530 | |
dc.identifier.uri | https://doi.org/10.3176/proc.2008.4.02 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/8263 | |
dc.description | Özgür, Cihan (Balikesir Author) | en_US |
dc.description.abstract | We study Riemannian manifolds M admitting a semi-symmetric metric connection ($) over tilde such that the vector field U is a parallel unit vector field with respect to the Levi-Civita connection del. We prove that ($) over tilde .R = 0 if and only if M is semisymmetric; if ($) over tilde .R = 0 or R.($) over tilde - ($) over tilde .R = 0 or M is semisymmetric and ($) over tilde.($) over tilde = 0, then M is conformally flat and quasi-Einstein. Here R and ($) over tilde denote the curvature tensors of del and ($) over tilde, respectively. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Estonian Academy Publishers | en_US |
dc.relation.isversionof | 10.3176/proc.2008.4.02 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Levi-Civita Connection | en_US |
dc.subject | Semi-Symmetric Metric Connection | en_US |
dc.subject | Conformally Flat Manifold | en_US |
dc.subject | Quasi-Einstein Manifold | en_US |
dc.title | Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions | en_US |
dc.type | article | en_US |
dc.relation.journal | Proceedings of The Estonian Academy of Sciences | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-4579-7151 | en_US |
dc.identifier.volume | 57 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 210 | en_US |
dc.identifier.endpage | 216 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |