Parametric characterizations in superparamagnetic latex
Özet
The effect of synthesis parameters on the production of superparamagnetic latex, which are magnetite nanoparticles covered with a poly(methyl methacrylate) layer, were studied. The synthesis method was based on the developed route of emulsifier-free emulsion polymerization. Under this study, effects of the monomer and initiator concentrations, the amount of magnetic sol, the stirring rate and the adding rate of the magnetic sol on the properties of synthesized latexes were investigated. The characterizations were performed by a high resolution transmission electron microscopy, a dynamic light scattering, a vibrating sample magnetometer and a gel permeation chromatography. The results showed that the monomer concentration was found to be the most effective parameter on latex stability. As the initiator amount and the stirring rate increased, saturation magnetization and average molecular weight decreased due to the reactions occurring between surfaces of magnetite nanoparticles and initiator fragments. On increasing amount of magnetic sol, the saturation magnetization and polymer molecular weight increased but the size of nanospheres was unchanged because of the ions in magnetic sol. It was seen that the desired size and magnetic properties of the latex could be obtained since the parameters were found to have substantial impact on their properties.