dc.contributor.author | Cangül, İsmail Naci | |
dc.contributor.author | Şahin, Recep | |
dc.contributor.author | İkikardeş, Sebahattin | |
dc.contributor.author | Koruoğlu, Özden | |
dc.date.accessioned | 2019-10-17T10:21:04Z | |
dc.date.available | 2019-10-17T10:21:04Z | |
dc.date.issued | 2007 | en_US |
dc.identifier.issn | 0362-1588 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/8021 | |
dc.description | Şahin, Recep (Balikesir Author) | en_US |
dc.description.abstract | Let q >= 3 be an odd integer and let H(lambda(q)) be the Hecke group associated to q. Let m be a positive integer and H-m(lambda(q)) be the m-th power subgroup of H(lambda(q)). In this work, the power subgroups H-m(lambda(q)) are discussed. The Reidemeister-Schreier method and the permutation method are used to obtain the abstract group structure and generators of H-m(lambda(q)); their signatures are then also determined. A similar result on the Hecke groups H(lambda(q)), q prime, which says that H'(lambda(q)) congruent to H-2(lambda) boolean AND H-q (lambda(q)), is generalized to Hecke groups H(lambda(q)) with q >= 3 odd integer. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Houston | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hecke Groups | en_US |
dc.subject | Power Subgroup | en_US |
dc.subject | Commutator Subgroup | en_US |
dc.title | Power subgroups of some Hecke groups II | en_US |
dc.type | article | en_US |
dc.relation.journal | Houston Journal of Mathematics | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-0700-5774 | en_US |
dc.identifier.volume | 33 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 33 | en_US |
dc.identifier.endpage | 42 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |