Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTecer, Lokman Hakan
dc.date.accessioned2019-10-17T08:24:45Z
dc.date.available2019-10-17T08:24:45Z
dc.date.issued2007en_US
dc.identifier.issn1230-1485
dc.identifier.urihttps://hdl.handle.net/20.500.12462/7982
dc.description.abstractIn this study, artificial neural networks are proposed to predict the concentrations of SO, and PM at two different stations in Zonguldak city, a major coastal mining area in Turkey. The established artificial neural network models involve meteorological parameters and historical data on observed SO2, PM as input variables. The models are based on a three-layer neural network trained by a back-propagation algorithm. The models accurately measure the trend of SO2, and PM concentrations. The results obtained through the proposed models show that artificial neural networks can efficiently be used in the analysis and prediction of air quality.en_US
dc.language.isoengen_US
dc.publisherHarden_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectMLPen_US
dc.subjectBackpropagationen_US
dc.subjectTime Seriesen_US
dc.subjectPrediction Of SO2 And PM Pollutionen_US
dc.subjectZonguldaken_US
dc.titlePrediction of SO2 and PM concentrations in a coastal mining area (Zonguldak, Turkey) using an artificial neural networken_US
dc.typearticleen_US
dc.relation.journalPolish Journal of Environmental Studiesen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.identifier.volume16en_US
dc.identifier.issue4en_US
dc.identifier.startpage633en_US
dc.identifier.endpage638en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster