dc.contributor.author | Israfilov, Daniyal M. | |
dc.date.accessioned | 2019-10-17T08:12:12Z | |
dc.date.available | 2019-10-17T08:12:12Z | |
dc.date.issued | 2003 | en_US |
dc.identifier.issn | 10.1016/j.jat.2003.09.008 | |
dc.identifier.uri | https://doi.org/ 10.1016/j.jat.2003.09.008 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/7895 | |
dc.description.abstract | Let G be a Jordan smooth domain of bounded boundary rotation, let z(0) epsilon G, and let w = phi(0) (z) be the conformal mapping of G onto D (0, r(0)) := {w : \w\ < r(0)) with the normalization phi(0) (z(0)) = 0, phi(0)' (z(0)) = 1. Let also pi(n) (z), n = 1, 2,..., be the Bieberbach polynomials for the pair (G, z(0)). We investigate the uniform convergence of these polynomials on 6 and prove the 0 estimate \\ phi(0) - pi(n)\\ ((G) over bar) (.)= (zepsilon (G) over bar)max \phi(0) (z) - pi(n9)(z)\ less than or equal to (c) under bar /n(1 - epsilon') for some constant e = (epsilon) independent of n. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.isversionof | 10.1016/j.jat.2003.09.008 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bieberbach Polynomials | en_US |
dc.subject | Conformal Mapping | en_US |
dc.subject | Smooth Boundaries | en_US |
dc.subject | Bounded Rotation | en_US |
dc.subject | Uniform Convergence | en_US |
dc.title | Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Approximation Theory | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 125 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 116 | en_US |
dc.identifier.endpage | 130 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |