dc.contributor.author | Kocapınar, Canan | |
dc.contributor.author | Özkoç, Arzu | |
dc.contributor.author | Tekcan, Ahmet | |
dc.date.accessioned | 2019-10-17T07:54:53Z | |
dc.date.available | 2019-10-17T07:54:53Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.issn | 0381-7032 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/7777 | |
dc.description | Kocapınar, Canan (Balikesir Author) | en_US |
dc.description.abstract | In this work, we first prove that every prime number p equivalent to 1 (mod 4) can be written of the form P-2-4Q with two positive integers P and Q, and then we define the sequence B-n(P, Q) to be B-0 = 2, B-1 = P and B-n = P Bn-1 - QB(n-2) for n >= 2 and derive some algebraic identities on it. Also we formulate the limit of cross ratio for four consecutive numbers B-n, Bn+1, Bn+2 and Bn+3. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Charles Babbage Res Ctr | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fibonacci | en_US |
dc.subject | Lucas | en_US |
dc.subject | Pell Numbers | en_US |
dc.subject | Binet's Formula | en_US |
dc.subject | Cross-Ratio | en_US |
dc.title | The integer sequence B = Bn(P,Q) with parameters P and Q | en_US |
dc.type | article | en_US |
dc.relation.journal | Ars Combinatoria | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 121 | en_US |
dc.identifier.startpage | 187 | en_US |
dc.identifier.endpage | 200 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |