dc.contributor.author | Aminov, Yu. | |
dc.contributor.author | Arslan, Kadri | |
dc.contributor.author | Bayram, Bengü Kılıç | |
dc.contributor.author | Bulca, Betül | |
dc.contributor.author | Murathan, Cengizhan | |
dc.contributor.author | Öztürk, Günay | |
dc.date.accessioned | 2019-10-16T11:53:47Z | |
dc.date.available | 2019-10-16T11:53:47Z | |
dc.date.issued | 2011 | en_US |
dc.identifier.issn | 1812-9471 | |
dc.identifier.issn | eISSN: 1817-5805 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/7248 | |
dc.description | Bayram, Bengü Kılıç (Balikesir Author) | en_US |
dc.description.abstract | For the Monge-Ampere equation Z(xx)Z(yy) - Z(xy)(2) = b(20)(x2)+b(11).xy+b(02y)(2)+ b(00) we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomial of 4-th degree and 4b(20)b(02) - b(11)(2) > 0, then the solution also does not exist. If 4b(20)b(02) - b(11)(2) = 0, then we have solutions. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | B Verkin Inst Low Temperature Physics & Engineering | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Monge-Ampere Equation | en_US |
dc.subject | Polynomial | en_US |
dc.subject | Convex Surface | en_US |
dc.title | On the solution of the monge-ampere equation z(xx)z(yy)-z(xy)(2)=f(x, y) with quadratic right side | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Mathematical Physics Analysis Geometry | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 7 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 203 | en_US |
dc.identifier.endpage | 211 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |