dc.contributor.author | Israfilov, Daniyal M. | |
dc.contributor.author | Testici, Ahmet | |
dc.date.accessioned | 2019-09-03T11:40:49Z | |
dc.date.available | 2019-09-03T11:40:49Z | |
dc.date.issued | 2017 | en_US |
dc.identifier.issn | 00816906 | |
dc.identifier.uri | https://doi.org/10.1556/012.2017.54.4.1378 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/6221 | |
dc.description | Israfilov, Daniyal M. (Balikesir Author) | en_US |
dc.description.abstract | Let G be a finite simple connected domain in the complex plane C, bounded by a Carleson curve Γ := ∂G. In this work the direct and inverse theorems of approximation theory by the algebraic polynomials in the weighted generalized grand Smirnov classes ϵp ),θ(G,ω) and Ep),θ(G - ,ω), 1 < p < ∞, in the term of the rth, r = 1, 2, ⋯, mean modulus of smoothness are proved. As a corollary the constructive characterizations of the weighted generalized grand Lipschitz classes are obtained. | en_US |
dc.description.sponsorship | This work was supported by Balikesir University research project No: 2016.001 (1.2015.0026): “Approximation Problems in the Grand Lebesgue Spaces”. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Akademiai Kiado Rt. | en_US |
dc.relation.isversionof | 10.1556/012.2017.54.4.1378 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Direct Theorem | en_US |
dc.subject | Generalized Grand Smirnov Classes | en_US |
dc.subject | Inverse Theorem | en_US |
dc.subject | Modulus of Smoothness | en_US |
dc.subject | Muckenhoupt Weights | en_US |
dc.title | Approximation in weighted generalized grand Smirnov classes | en_US |
dc.type | article | en_US |
dc.relation.journal | Studia Scientiarum Mathematicarum Hungarica | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 54 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 471 | en_US |
dc.identifier.endpage | 488 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |