dc.contributor.author | İsrafilov, Daniyal M. | |
dc.date.accessioned | 2019-09-03T07:07:31Z | |
dc.date.available | 2019-09-03T07:07:31Z | |
dc.date.issued | 2001 | en_US |
dc.identifier.issn | 0176-4276 | |
dc.identifier.uri | https://doi.org/10.1007/s003650010030 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/6202 | |
dc.description.abstract | Let G subset of C be a finite domain with a regular Jordan boundary L. In this work, the approximation properties of a p-Faber polynomial series of functions in the weighted Smirnov class EP (G, W) are studied and the rate of polynomial approximation, for f epsilon E-p(G, omega) by the weighted integral modulus of continuity, is estimated. Some application of this result to the uniform convergence of the Bieberbach polynomials rr, in a closed domain (G) over bar with a smooth boundary L is given. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | 10.1007/s003650010030 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Faber Polynomials | en_US |
dc.subject | Weighted Smirnov Class | en_US |
dc.subject | Bieberbach Polynomials | en_US |
dc.subject | Conformal Mapping | en_US |
dc.subject | Uniform Convergence | en_US |
dc.title | Approximation by p-Faber polynomials in the weighted Smirnov class E-P (G,omega) and the Bieberbach polynomials | en_US |
dc.type | article | en_US |
dc.relation.journal | Constructive Approximation | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 17 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 335 | en_US |
dc.identifier.endpage | 351 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |