dc.contributor.author | İsrafilov, Daniyal M. | |
dc.contributor.author | Testici, Ahmet | |
dc.date.accessioned | 2019-08-05T06:58:32Z | |
dc.date.available | 2019-08-05T06:58:32Z | |
dc.date.issued | 2018 | en_US |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.uri | https://doi.org/ 10.1016/j.jmaa.2017.10.067 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/5785 | |
dc.description | İsrafilov, Daniyal M. (Balikesir Author) | en_US |
dc.description.abstract | In the variable exponent Lebesgue space, the r-th modulus of smoothness (r = 1,2, ... ) is defined and in this term, the direct and inverse theorems of approximation theory are proved. Moreover, the constructive characterization problems for the some subclasses are discussed. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.isversionof | 10.1016/j.jmaa.2017.10.067 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Approximation By Polynomials | en_US |
dc.subject | Modulus of Smoothness | en_US |
dc.subject | Variable Exponent Lebesgue Spaces | en_US |
dc.subject | Direct and Inverse Theorems | en_US |
dc.subject | Generalized Lipschitz Classes | en_US |
dc.title | Approximation problems in the lebesgue spaces with variable exponent | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Mathematical Analysis and Applications | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-1163-7037 | en_US |
dc.identifier.volume | 459 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 112 | en_US |
dc.identifier.endpage | 123 | en_US |
dc.relation.tubitak | info:eu-repo/grantAgreement/TUBITAK/114F422 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |