Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTaş, Nihal
dc.contributor.authorEge, Özgür
dc.date.accessioned2024-09-20T11:18:13Z
dc.date.available2024-09-20T11:18:13Z
dc.date.issued2023en_US
dc.identifier.isbn978-981127260-8, 978-981127259-2
dc.identifier.urihttps://doi.org/10.1142/9789811272608_0010
dc.identifier.urihttps://hdl.handle.net/20.500.12462/15199
dc.descriptionTaş, Nihal (Balikesir Author)en_US
dc.description.abstractFixed-point theory has been comprehensively studied with several methods. One of these methods is to generalize the used metric space such as bv(s)-metric spaces. Another method is to analyze the geometric features of the fixed-point set. In the light of these methods, in this chapter, we prove Caristi’s fixed-point theorem and new fixed-figure theorems in bv(s)-metric spaces. We present some examples to emphasize the significance of geometrical results. To further strengthen the obtained theoretical results, we establish an application to S-Shaped Rectified Linear Unit (SReLU) activation functions.en_US
dc.language.isoengen_US
dc.publisherWorld Scientific Publishing Co.en_US
dc.relation.isversionof10.1142/9789811272608_0010en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFixed Pointsen_US
dc.subjectContractiveen_US
dc.subjectMetric Spaceen_US
dc.titleCaristi-type nonunique fixed-point results and fixed-circle problem on bv(s)-metric spacesen_US
dc.typebookParten_US
dc.relation.journalAdvances in Number Theory and Applied Analysisen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.identifier.startpage231en_US
dc.identifier.endpage260en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster