dc.contributor.author | Özgür, Nihal | |
dc.contributor.author | Taş, Nihal | |
dc.date.accessioned | 2024-08-02T07:15:31Z | |
dc.date.available | 2024-08-02T07:15:31Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 2667-9930 | |
dc.identifier.uri | https://doi.org/10.32513/asetmj/193220082336 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/14927 | |
dc.description.abstract | The main motivation of this paper is to investigate the geometric properties of non unique fixed points of self-mappings via simulation functions. Geometric properties of the fixed point set Fix(f) of a self-mapping f on a metric or a generalized metric space is an attractive issue. The set Fix(f) can contain a geometric figure (a circle, an ellipse, etc.) or it can be a geometric figure. In this paper, we consider the set of simulation functions for geometric applications in the fixed point theory both on metric and some generalized metric spaces (S-metric spaces and b-metric spaces). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Tbilisi Centre for Mathematical Sciences | en_US |
dc.relation.isversionof | 10.32513/asetmj/193220082336 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fixed Circle | en_US |
dc.subject | Fixed Disc | en_US |
dc.subject | Fixed Ellipse | en_US |
dc.subject | Simulation Function | en_US |
dc.title | Geometric properties of fixed points and simulation functions | en_US |
dc.type | article | en_US |
dc.relation.journal | Advanced Studies: Euro-Tbilisi Mathematical Journal | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-8152-1830 | en_US |
dc.contributor.authorID | 0000-0002-4535-4019 | en_US |
dc.identifier.volume | 16 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 91 | en_US |
dc.identifier.endpage | 108 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |