dc.contributor.author | İsrafilov, Daniyal M. | |
dc.date.accessioned | 2024-08-02T06:39:38Z | |
dc.date.available | 2024-08-02T06:39:38Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 1617-9447 / 2195-3724 | |
dc.identifier.uri | https://doi.org/10.1007/s40315-023-00496-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/14926 | |
dc.description.abstract | In this work maximal-simultaneous approximation properties of the partial sums of Faber series in the Bergman space of analytic functions defined on bounded continuums of the complex plane are studied. The error of this approximation in dependence of the best approximation number and parameters of the considered canonical domains is estimated. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s40315-023-00496-2 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Bergman Spaces | en_US |
dc.subject | Faber Series | en_US |
dc.subject | Maximal Convergence | en_US |
dc.subject | Quasidisc | en_US |
dc.subject | Simultaneous Approximation | en_US |
dc.title | Maximal-simultaneous approximation by Faber series in Bergman spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | Computational Methods and Function Theory | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 415 | en_US |
dc.identifier.endpage | 425 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |