Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDemir, Bilal
dc.date.accessioned2024-06-06T07:38:17Z
dc.date.available2024-06-06T07:38:17Z
dc.date.issued2023en_US
dc.identifier.issn2391-5455
dc.identifier.urihttps://doi.org/10.1515/math-2023-0117
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14814
dc.description.abstractThere are strong relations between the theory of continued fractions and groups of linear fractional transformations. We consider the group G 3,3 generated by the linear fractional transformations a=1-1/z and b = z + 2 b=z+2. This group is the unique subgroup of the modular group PSL (2, Z)) with index 2. We calculate the cusp point of an element given as a word in generators. Conversely, we use the continued fraction expansion of a given rational number p/q, to obtain an element in G 3, 3 with cusp point p/q. As a result, we say that the action of G 3, 3 on rational numbers is transitive.en_US
dc.language.isoengen_US
dc.publisherWalter De Gruyter GMBHen_US
dc.relation.isversionof10.1515/math-2023-0117en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectContinued Fractionsen_US
dc.subjectCusp Pointsen_US
dc.subjectModular Groupen_US
dc.titleContinued fractions related to a group of linear fractional transformationsen_US
dc.typearticleen_US
dc.relation.journalOpen Mathematicsen_US
dc.contributor.departmentNecatibey Eğitim Fakültesien_US
dc.contributor.authorID0000-0002-6638-6909en_US
dc.identifier.volume21en_US
dc.identifier.issue1en_US
dc.identifier.startpage1en_US
dc.identifier.endpage8en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess