Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKarpuz, Ali
dc.contributor.authorKöçkar, Hakan
dc.contributor.authorKaplan, Nadir
dc.date.accessioned2024-05-27T10:49:48Z
dc.date.available2024-05-27T10:49:48Z
dc.date.issued2023en_US
dc.identifier.issn0031-8949 / 1402-4896
dc.identifier.urihttps://doi.org/10.1088/1402-4896/acf7fc
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14735
dc.descriptionKöçkar, Hakan (Balikesir Author)en_US
dc.description.abstractIn this study, the suitability of Co/Cu multilayer films with different physical conditions (varying thickness values and systematic annealing processes) in magnetic technology applications is discussed. Co/Cu films were deposited by the sputtering technique. The effects of different thicknesses of non-magnetic (Cu) layers and annealing temperature on magneto-structural properties were investigated. Different thicknesses of Cu layers were determined as 34 nm, 10 nm, 4 nm. Additionally, two annealed situations were considered to investigate the annealing effect. While the first one is exposing the films to 80 & DEG;C and 130 & DEG;C for 240 s, second one is annealing the films at 180 & DEG;C for different exposure times (50 s and 150 s). All films that have different thicknesses of Cu layers crystallized in (111) plane of the face centered cubic (fcc) structure. The intensity of this peak increased with increasing Cu layers thickness. Variation in the thickness of Cu layers has an important effect on the film surface. Saturation magnetization (Ms), coercivity (Hc) and squareness (Mr/Ms, Mr: remanent magnetization) were considerably affected by variation of the Cu content and film surface caused by the change in the thickness of the Cu layers. The film with 4 nm Cu layer thickness has the highest Ms, lowest Hc values and high Mr/Ms ratio. This indicates magnetically high efficient compared to the other films in the same series. The fcc structure continued to exist for the films annealed at 80 & DEG;C and 130 & DEG;C for 240 s. It was found that the annealing procedure transfigured the film surface and the differences in Ms and Hc values can be mostly attributed to this transfiguration because of the same film content revealed. An increase in Ms value, and a slight decrease in Hc and Mr/Ms values were detected for the annealed film at 130 & DEG;C, compared to the film annealed at 80 & DEG;C. It was also seen that the film structure was damaged at 180 & DEG;C because of excessive heat transfer.en_US
dc.description.sponsorshipKaramanoglu Mehmetbey University Turkiye Cumhuriyeti Kalkinma Bakanligi 26-M-17 2005K120170en_US
dc.language.isoengen_US
dc.publisherInstitute of Physicsen_US
dc.relation.isversionof10.1088/1402-4896/acf7fcen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectAnnealed Filmsen_US
dc.subjectCo/Cu Multilayersen_US
dc.subjectCu Layer Thicknessesen_US
dc.subjectMagnetic Propertiesen_US
dc.subjectStructural Analysisen_US
dc.titleInvestigation of the effects of Cu layer thickness and annealing temperature under air atmosphere on the properties of Co/Cu multilayer filmsen_US
dc.typearticleen_US
dc.relation.journalPhysica Scriptaen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0002-3050-1549en_US
dc.contributor.authorID0000-0002-4862-0490en_US
dc.contributor.authorID0000-0002-2471-1179en_US
dc.identifier.volume98en_US
dc.identifier.issue10en_US
dc.identifier.startpage1en_US
dc.identifier.endpage12en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster