Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkolaş, Halil İbrahim
dc.contributor.authorKaleli, Alirıza
dc.date.accessioned2024-02-05T15:59:13Z
dc.date.available2024-02-05T15:59:13Z
dc.date.issued2022
dc.identifier.issn2147-3129
dc.identifier.issn2147-3188
dc.identifier.urihttps://doi.org/10.17798/bitlisfen.1014488
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1100851
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14398
dc.description.abstractIn this paper, Gaussian process (GP) algorithm, which is one of the machine learning methods, is designed to control the vehicle active suspension system (VASS). Experimental data were trained by supervised learning method (regression method). The data were obtained from an optimal linear quadratic controller tuned based on a full state feedback optimal control approach. The results demonstrated that the proposed machine learning (ML) based ground-penetrating radar (GPR) controller outperforms the optimal controller under uncertainties in terms of reducing the oscillation in sprung mass position with a 15% and 21.64% reduction for square and random road conditions, respectively.en_US
dc.language.isoengen_US
dc.relation.ispartofBitlis Eren Üniversitesi Fen Bilimleri Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVehicle Active Suspension Systemen_US
dc.subjectMachine Learning Methodsen_US
dc.subjectLinear Quadratic Optimal Controlen_US
dc.subjectRandom Road Profileen_US
dc.titleDevelopment of machine learning based control system for vehicle active suspension systemen_US
dc.typearticleen_US
dc.contributor.departmentBalıkesir Üniversitesien_US
dc.identifier.volume11en_US
dc.identifier.issue2en_US
dc.identifier.startpage421en_US
dc.identifier.endpage428en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.buozeltrdizinidealen_US]
dc.department-tempBalıkesir Üniversitesi, Balıkesir Meslek Yüksekokulu, Balıkesir Türkiye Samsun Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü, Samsun, Türkiyeen_US
dc.identifier.trdizinid1100851en_US
dc.identifier.doi10.17798/bitlisfen.1014488


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster