dc.contributor.author | Akolaş, Halil İbrahim | |
dc.contributor.author | Kaleli, Alirıza | |
dc.date.accessioned | 2024-02-05T15:59:13Z | |
dc.date.available | 2024-02-05T15:59:13Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 2147-3129 | |
dc.identifier.issn | 2147-3188 | |
dc.identifier.uri | https://doi.org/10.17798/bitlisfen.1014488 | |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/1100851 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/14398 | |
dc.description.abstract | In this paper, Gaussian process (GP) algorithm, which is one of the machine learning methods, is designed to control the vehicle active suspension system (VASS). Experimental data were trained by supervised learning method (regression method). The data were obtained from an optimal linear quadratic controller tuned based on a full state feedback optimal control approach. The results demonstrated that the proposed machine learning (ML) based ground-penetrating radar (GPR) controller outperforms the optimal controller under uncertainties in terms of reducing the oscillation in sprung mass position with a 15% and 21.64% reduction for square and random road conditions, respectively. | en_US |
dc.language.iso | eng | en_US |
dc.relation.ispartof | Bitlis Eren Üniversitesi Fen Bilimleri Dergisi | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Vehicle Active
Suspension System | en_US |
dc.subject | Machine
Learning Methods | en_US |
dc.subject | Linear
Quadratic Optimal Control | en_US |
dc.subject | Random Road Profile | en_US |
dc.title | Development of machine learning based control system for vehicle active suspension system | en_US |
dc.type | article | en_US |
dc.contributor.department | Balıkesir Üniversitesi | en_US |
dc.identifier.volume | 11 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 421 | en_US |
dc.identifier.endpage | 428 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.buozel | trdizinideal | en_US] |
dc.department-temp | Balıkesir Üniversitesi, Balıkesir Meslek Yüksekokulu, Balıkesir Türkiye Samsun Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü, Samsun, Türkiye | en_US |
dc.identifier.trdizinid | 1100851 | en_US |
dc.identifier.doi | 10.17798/bitlisfen.1014488 | |