Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖzgür, Nihal
dc.contributor.authorAntal, Swati
dc.contributor.authorTomar, Anita
dc.date.accessioned2023-11-06T11:07:12Z
dc.date.available2023-11-06T11:07:12Z
dc.date.issued2022en_US
dc.identifier.issn2314-8896 / 2314-8888
dc.identifier.urihttps://doi.org/10.1155/2022/2592573
dc.identifier.urihttps://hdl.handle.net/20.500.12462/13609
dc.descriptionÖzgür, Nihal (Balikesir Author)en_US
dc.description.abstractIn this paper, utilizing the Fibonacci-Mann iteration process, we explore Julia and Mandelbrot sets by establishing the escape criteria of a transcendental function, sin(z(n )) + az + c, n >= 2; here, z is a complex variable, and a and c are complex numbers. Also, we explore the effect of involved parameters on the deviance of color, appearance, and dynamics of generated fractals. It is well known that fractal geometry portrays the complexity of numerous complicated shapes in our surroundings. In fact, fractals can illustrate shapes and surfaces which cannot be described by the traditional Euclidean geometry.en_US
dc.language.isoengen_US
dc.publisherHindawi Ltden_US
dc.relation.isversionof10.1155/2022/2592573en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFixed-Pointen_US
dc.titleJulia and Mandelbrot Sets of transcendental function via Fibonacci-Mann iterationen_US
dc.typearticleen_US
dc.relation.journalJournal of Function Spacesen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0002-8152-1830en_US
dc.contributor.authorID0000-0001-8033-856Xen_US
dc.contributor.authorID0000-0001-5517-0021en_US
dc.identifier.volume2022en_US
dc.identifier.issueMAYen_US
dc.identifier.startpage1en_US
dc.identifier.endpage13en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster