Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydın, Fatih
dc.date.accessioned2023-11-03T07:17:23Z
dc.date.available2023-11-03T07:17:23Z
dc.date.issued2022en_US
dc.identifier.issn0957-4174 / 1873-6793
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2022.116650
dc.identifier.urihttps://hdl.handle.net/20.500.12462/13602
dc.description.abstractThe preservation of the inbuilt structures of data sets and the more decomposition of the classes are a significant interest in dimension embedding. In this respect, the dimensionality reduction methods use novel techniques to better ascertain the fundamental structure of the manifold on which the data lies. However, both conventional and state-of-art supervised dimensionality reduction methods cannot benefit from class information good enough. Therefore, their generalization performances on the test data are weak. A new non-linear supervised algorithm, which we call Class-driven Dimension Embedding (CDE), is proposed for utilizing class information. CDE performs three outstanding characteristics: (i) preserving the intrinsic relationship between the data points and classes; (ii) producing wide margins between classes; (iii) enhancing the generalization performance on the test data. The proposed method embeds a d-dimensional data set into the c-dimensional space (c designates the number of classes) through the corresponding values to classes of each point by exploiting a neighborhood graph and a feature weighting function. The experimental results on forty-eight data sets demonstrate that CDE is comparable to or better than twenty-four dimensionality reduction algorithms in terms of classification accuracy and visualization. The source code of CDE can be found in https://doi.org/10.24433/CO.0967299.v1 for computational reproducibility.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.isversionof10.1016/j.eswa.2022.116650en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectMachine Learningen_US
dc.subjectDimension Embeddingen_US
dc.subjectCumulative Distribution Functionen_US
dc.subjectBrownian Motionen_US
dc.subjectConcave-Convex Functionsen_US
dc.subjectDistance Metricsen_US
dc.titleA class-driven approach to dimension embeddingen_US
dc.typearticleen_US
dc.relation.journalExpert Systems with Applicationsen_US
dc.contributor.departmentMühendislik Fakültesien_US
dc.contributor.authorID0000-0001-9679-0403en_US
dc.identifier.volume195en_US
dc.identifier.issueJUNen_US
dc.identifier.startpage1en_US
dc.identifier.endpage17en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster