Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorİkikardeş, Nazlı Yıldız
dc.contributor.authorHwang, Jihyun
dc.contributor.authorKim, Daeyeoul
dc.date.accessioned2023-09-27T10:42:41Z
dc.date.available2023-09-27T10:42:41Z
dc.date.issued2022en_US
dc.identifier.issn2391-5455
dc.identifier.urihttps://doi.org/10.1515/math-2022-0031
dc.identifier.urihttps://hdl.handle.net/20.500.12462/13438
dc.descriptionİkikardeş, Nazlı Yıldız (Balikesir Author )en_US
dc.description.abstractThe aim of this paper is to find arithmetic convolution sums of some restricted divisor functions. When divisors of a certain natural number satisfy a suitable condition for modulo 12, those restricted divisor functions are expressed by the coefficients of certain eta quotients. The coefficients of eta quotients are expressed by the sine function and cosine function, and this fact is used to derive formulas for the convolution sums of restricted divisor functions and of the number of divisors. In the sine function used to find the coefficients of eta quotients, the result is obtained by utilizing a feature with symmetry between the divisor and the corresponding divisor. Let N, r be positive integers andd be a positive divisor of N. Let e(r)(N; 12) denote the difference between the number of 2N/d - d congruent to r modulo 12 and the number of those congruent to - r modulo 12. The main results of this article are to find the arithmetic convolution identities for Sigma(a1+ ... +aj=N)(Pi(j)(i=1)(e) over cap (a(i))) with (e) over cap (a(i)) = e1(a(i); 12) + 2e(3)(a(i); 12) + e(5)(a(i); 12) and j = 1, 2, 3, 4. All results are obtained using elementary number theory and modular form theory.en_US
dc.description.sponsorshipNational Research Foundation of Korea 2021R1F1A1051093 Ministry of Science, ICT & Future Planning, Republic of Korea National Research Foundation of Korea 2021R1F1A1051093en_US
dc.language.isoengen_US
dc.publisherDe Gruyter Poland SP Z O Oen_US
dc.relation.isversionof10.1515/math-2022-0031en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectRestricted Divisor Functionsen_US
dc.subjectEta Quotienten_US
dc.subjectConvolution Sumsen_US
dc.subjectQ-Seriesen_US
dc.titleArithmetic convolution sums derived from eta quotients related to divisors of 6en_US
dc.typearticleen_US
dc.relation.journalOpen Mathematicsen_US
dc.contributor.departmentNecatibey Eğitim Fakültesien_US
dc.contributor.authorID0000-0001-8756-8085en_US
dc.identifier.volume20en_US
dc.identifier.issue1en_US
dc.identifier.startpage341en_US
dc.identifier.endpage365en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess