Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTestici, Ahmet
dc.date.accessioned2023-08-22T07:21:27Z
dc.date.available2023-08-22T07:21:27Z
dc.date.issued2022en_US
dc.identifier.issn2074-1863 / 2074-1871
dc.identifier.urihttps://doi.org/10.54708/23040122_2022_14_3_117
dc.identifier.urihttps://hdl.handle.net/20.500.12462/13298
dc.description.abstractLet K be a bounded set on the complex plane C with a connected complement (Formula Presented) and (Formula Presented) By φ we denote the conformal mapping of K−onto {w ∈ C: |w| > 1} normalized by the conditions φ (∞) = ∞ and (Formula Presented) and (Formula Presented). Let also (Formula Presented), k = 0, 1, 2,… be the Faber polynomials for K constructed via conformal mapping φ. As it is well known, if f is an analytic function in GR, then the representation (Formula Presented), z ∈ GR holds. The partial sums of Faber series play an important role in constructing approximations in complex plane and investigating properties of Faber series is one of the essential issue. In this work the maximal convergence of the partial sums of the partial sums of the Faber series of f in weighted rearrangement invariant Smirnov class EX (GR, ω) of analytic functions in GR is studied. Here the weight ω satisfies the Muckenhoupt condition on ΓR. The estimates are given in the uniform norm on K. The right sides of obtained inequalities involve the powers of the parameter R and En (f,G)X.ω called the best approximation number of f in EX (GR, ω), defined as En (Formula Presented). Here Πn is the class of algebraic polynomials of degree not exceeding n. These results given in this paper is a kind of generalisation of similar results obtained in the classical Smirnov classes.en_US
dc.language.isoengen_US
dc.publisherInst Mathematics Computer Center Russiaen_US
dc.relation.isversionof10.54708/23040122_2022_14_3_117en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectMaximal Convergenceen_US
dc.subjectBanach Function Spaceen_US
dc.subjectFaber Seriesen_US
dc.subjectWeighted Rearrangement Invariant Spaceen_US
dc.titleMaximal convergence of faber series in weighted rearrangement invariant smirnov classesen_US
dc.typearticleen_US
dc.relation.journalUfa Mathematical Journalen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.identifier.volume14en_US
dc.identifier.issue3en_US
dc.identifier.startpage117en_US
dc.identifier.endpage126en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster