Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorEroğlu, Beyza Billur İskender
dc.contributor.authorAvcı, Derya
dc.date.accessioned2022-03-02T08:01:24Z
dc.date.available2022-03-02T08:01:24Z
dc.date.issued2021en_US
dc.identifier.issn1110-0168 - 2090-2670
dc.identifier.urihttps://doi.org/10.1016/j.aej.2020.12.018
dc.identifier.urihttps://hdl.handle.net/20.500.12462/12063
dc.description.abstractThe behavior of Cattaneo-Hristov heat diffusion moving in a line segment under the influence of specified initial and source temperatures has been investigated. The Fourier method has been applied to determine the eigenfunctions thus allowing reducing the problem to a set of time-fractional ordinary differential equations. Analytical solutions by applying the Laplace transform method have been developed.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.aej.2020.12.018en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCattaneo-Hristov Heat Diffusionen_US
dc.subjectLaplace Transformen_US
dc.subjectEigenfunction Expansionen_US
dc.subjectCauchy Problemen_US
dc.subjectSource Problemen_US
dc.subjectCaputo-Fabrizio Fractional Derivativeen_US
dc.titleSeparable solutions of Cattaneo-Hristov heat diffusion equation in a line segment: Cauchy and source problemsen_US
dc.typearticleen_US
dc.relation.journalAlexandria Engineering Journalen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0003-3575-8404en_US
dc.contributor.authorID0000-0003-3662-0474en_US
dc.identifier.volume60en_US
dc.identifier.issue2en_US
dc.identifier.startpage2347en_US
dc.identifier.endpage2353en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster