Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYıldırım, Mustagime Tülin
dc.contributor.authorKurt, Bülent
dc.date.accessioned2020-12-09T09:53:15Z
dc.date.available2020-12-09T09:53:15Z
dc.date.issued2019en_US
dc.identifier.issn1748-8842
dc.identifier.issn1758-4213
dc.identifier.urihttps://doi.org/10.1108/AEAT-10-2018-0266
dc.identifier.urihttps://hdl.handle.net/20.500.12462/10914
dc.descriptionKurt, Bülent (Balikesir Author)en_US
dc.description.abstractPurpose With the condition monitoring system on airplanes, failures can be predicted before they occur. Performance deterioration of aircraft engines is monitored by parameters such as fuel flow, exhaust gas temperature, engine fan speeds, vibration, oil pressure and oil temperature. The vibration parameter allows us to easily detect any existing or possible faults. The purpose of this paper is to develop a new model to estimate the low pressure turbine (LPT) vibration parameter of an aircraft engine by using the data of an aircraft's actual flight from flight data recorder (FDR). Design/methodology/approach First, statistical regression analysis is used to determine the parameters related to LPT. Then, the selected parameters were applied as an input to the developed Levenberg-Marquardt feedforward neural network and the output LPT vibration parameter was estimated with a small error. Analyses were performed on MATLAB and SPSS Statistics 22 package program. Finally, the confidence interval method is used to check the accuracy of the estimated results of artificial neural networks (ANNs). Findings This study shows that the health conditions of an aircraft engine can be evaluated in terms of this paper by using confidence interval prediction of ANN-estimated LPT vibration parameters without dismantling and expert knowledge. Originality/value The health condition of the turbofan engine was evaluated using the confidence interval prediction of ANN-estimated LPT vibration parameters.en_US
dc.description.sponsorshipErciyes University FDK-2016-6803en_US
dc.language.isoengen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.isversionof10.1108/AEAT-10-2018-0266en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectAnomaly Detectionen_US
dc.subjectConfidence Intervalen_US
dc.subjectLow Pressure Turbine (LPT) Vibration Valueen_US
dc.subjectAircraft Enginesen_US
dc.titleConfidence interval prediction of ANN estimated LPT parametersen_US
dc.typearticleen_US
dc.relation.journalAircraft Engineering and Aerospace Technologyen_US
dc.contributor.departmentEdremit Sivil Havacılık Yüksekokuluen_US
dc.contributor.authorID0000-0002-1741-5427en_US
dc.identifier.volume92en_US
dc.identifier.issue2en_US
dc.identifier.startpage101en_US
dc.identifier.endpage106en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster