dc.contributor.author | Güvenç, Şaban | |
dc.contributor.author | Özgür, Cihan | |
dc.date.accessioned | 2020-01-22T11:00:20Z | |
dc.date.available | 2020-01-22T11:00:20Z | |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 1402-9251 | |
dc.identifier.issn | 1776-0852 | |
dc.identifier.uri | https://doi.org/10.1080/14029251.2019.1640463 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/10526 | |
dc.description.abstract | We consider slant normal magnetic curves in (2n + 1)-dimensional S-manifolds. We prove that gamma is a slant normal magnetic curve in an S-manifold (M2m+s, phi, xi(alpha), eta(alpha), g) if and only if it belongs to a list of slant phi-curves satisfying some special curvature equations. This list consists of some specific geodesics, slant circles, Legendre and slant helices of order 3. We construct slant normal magnetic curves in Double-struck capital R2(n)(+s)(-3s) and give the parametric equations of these curves. | en_US |
dc.description.sponsorship | Balikesir Research Grant | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.isversionof | 10.1080/14029251.2019.1640463 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Magnetic Curve | en_US |
dc.subject | Slant Curve | en_US |
dc.subject | S-Manifold | en_US |
dc.title | On slant magnetic curves in s-manifolds | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Nonlinear Mathematical Physics | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0001-6254-4693 | en_US |
dc.contributor.authorID | 0000-0002-4579-7151 | en_US |
dc.identifier.volume | 26 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 536 | en_US |
dc.identifier.endpage | 554 | en_US |
dc.relation.ec | Balikesir Research Grant BAP 2018/016 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |