Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOktay, Burçin
dc.date.accessioned2020-01-14T07:00:51Z
dc.date.available2020-01-14T07:00:51Z
dc.date.issued2019en_US
dc.identifier.issn2217-3412
dc.identifier.urihttps://hdl.handle.net/20.500.12462/10436
dc.description.abstractIt is known that Faber series are used for solving many problems in mechanical science, such as the problems on the stress analysis in the piezoelectric plane and the problems on the analysis of electro-elastic fields and thermo-elastic fields. In this paper, we consider that G is a complex domain bounded by a curve which belongs to a special subclass of smooth curves and the function f is analytic in the canonical domain G(R), R > 1. We research the rate of convergence to the function f by the partial sums of Faber series of the function f on the domain (G) over bar. We obtain results on the maximal convergence of the partial sums of the Faber series of the function f which belongs to the Smirnov-Orlicz class E-M (G(R)), R > 1.en_US
dc.description.sponsorshipprogram BAP by Balikesir University - 2018/073en_US
dc.language.isoengen_US
dc.publisherUniv Prishtinesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSmirnov-Orlicz Classesen_US
dc.subjectFaber Polynomialsen_US
dc.subjectFaber Seriesen_US
dc.subjectSmooth Curvesen_US
dc.subjectMaximal Convergenceen_US
dc.titleMaximal convergence of faber series in smirnov-orlicz classesen_US
dc.typearticleen_US
dc.relation.journalJournal of Mathematical Analysisen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0003-1 088-4615en_US
dc.identifier.volume10en_US
dc.identifier.issue6en_US
dc.identifier.startpage23en_US
dc.identifier.endpage31en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster