dc.contributor.author | Kavut, Selçuk | |
dc.contributor.author | Tutdere, Seher | |
dc.date.accessioned | 2020-01-10T13:04:05Z | |
dc.date.available | 2020-01-10T13:04:05Z | |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 0925-1022 | |
dc.identifier.issn | 1573-7586 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/10398 | |
dc.description | Kavut, Selçuk (Balikesir Author) | en_US |
dc.description.abstract | In 2003, Moreno and Castro proved that the covering radius of a class of primitive cyclic codes over the finite field F2 having minimum distance 5 (resp. 7) is 3 (resp. 5). We here give a generalization of this result as follows: the covering radius of a class of primitive cyclic codes over F2 with minimum distance greater than or equal to r+2 is r, where r is any odd integer. Moreover, we prove that the primitive binary e-error correcting BCH codes of length 2f-1 have covering radii 2e-1 for an improved lower bound of f. | en_US |
dc.description.sponsorship | Gebze Teknik University - BAP 2015-A17 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s10623-018-0525-y | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Cyclic Code | en_US |
dc.subject | BCH Code | en_US |
dc.subject | Covering Radius | en_US |
dc.subject | Finite Field | en_US |
dc.subject | Polynomial Equations | en_US |
dc.subject | 94B65 | en_US |
dc.title | The covering radii of a class of binary cyclic codes and some BCH codes | en_US |
dc.type | article | en_US |
dc.relation.journal | Designs Codes and Cryptography | en_US |
dc.contributor.department | Mühendislik Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-9 460-1418 | en_US |
dc.identifier.volume | 87 | en_US |
dc.identifier.issue | 2-3 | en_US |
dc.identifier.startpage | 317 | en_US |
dc.identifier.endpage | 325 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |