Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKavut, Selçuk
dc.contributor.authorTutdere, Seher
dc.date.accessioned2020-01-10T13:04:05Z
dc.date.available2020-01-10T13:04:05Z
dc.date.issued2019en_US
dc.identifier.issn0925-1022
dc.identifier.issn1573-7586
dc.identifier.urihttps://hdl.handle.net/20.500.12462/10398
dc.descriptionKavut, Selçuk (Balikesir Author)en_US
dc.description.abstractIn 2003, Moreno and Castro proved that the covering radius of a class of primitive cyclic codes over the finite field F2 having minimum distance 5 (resp. 7) is 3 (resp. 5). We here give a generalization of this result as follows: the covering radius of a class of primitive cyclic codes over F2 with minimum distance greater than or equal to r+2 is r, where r is any odd integer. Moreover, we prove that the primitive binary e-error correcting BCH codes of length 2f-1 have covering radii 2e-1 for an improved lower bound of f.en_US
dc.description.sponsorshipGebze Teknik University - BAP 2015-A17en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10623-018-0525-yen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCyclic Codeen_US
dc.subjectBCH Codeen_US
dc.subjectCovering Radiusen_US
dc.subjectFinite Fielden_US
dc.subjectPolynomial Equationsen_US
dc.subject94B65en_US
dc.titleThe covering radii of a class of binary cyclic codes and some BCH codesen_US
dc.typearticleen_US
dc.relation.journalDesigns Codes and Cryptographyen_US
dc.contributor.departmentMühendislik Fakültesien_US
dc.contributor.authorID0000-0002-9 460-1418en_US
dc.identifier.volume87en_US
dc.identifier.issue2-3en_US
dc.identifier.startpage317en_US
dc.identifier.endpage325en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster