Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.advisorİsrafilov, Daniyal Mehmetoğlu
dc.contributor.authorYıldırır, Yunus Emre
dc.date.accessioned2016-01-14T07:41:45Z
dc.date.available2016-01-14T07:41:45Z
dc.date.issued2006
dc.date.submitted2006en
dc.identifier.citationYıldırır, Yunus Emre. Faber genelleşmiş faber polinomlarının yaklaşım özellikleri. Yayınlanmamış doktora tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2006.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12462/288
dc.descriptionBalıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Ana Bilim Dalıen_US
dc.description.abstractBu tez 3 ana bölümden oluşmaktadır. Birinci bölümde, daha sonraki bölümlerde kullanılmak üzere, bazı temel tanım, teorem ve özellikler verilmiştir. Bu özelliklerin içinde, esasen, yaklaşımın çalışılacağı Bergman ve ağırlıklı Bergman uzaylarının tanımlandığı kvazikonform sınırlı bölgelerin özellikleri verilmiştir. kinci ve üçüncü bölümler, bu tezdeki ana sonuçların verildiği bölümlerdir. kinci bölümde, ilk olarak, Bergman ve ağırlıklı Bergman uzayları tanıtılmıştır. Ayrıca, sonsuz bölgeler için Faber polinomlarının tanımı ve bazı özellikleri incelenmiştir. Daha sonra, kvazikonform eğriyle sınırlı sonsuz bölgelerde geçerli bir integral gösterimi elde edilmiştir. Bu gösterim yardımıyla, Bergman uzaylarından olan fonksiyonlara Faber serileriyle yaklaşımın mümkünlüğü ispatlanmıştır. Son olarak, seriye açılımın tekliği incelenmiş ve yaklaşım hatası değerlendirilmiştir. Üçüncü bölümde ise, bir önceki bölümde elde edilen sonuçlar, ağırlıklı Bergman uzaylarına genelleştirilmiştir.en_US
dc.description.abstractThis thesis contains three main chapters. In the first chapter, some fundamental definitions, theorems and properties have been given for using next two chapters. In these properties, especially,. it has been investigated properties of domains with a quasiconformal boundary where Bergman and weighted Bergman spaces (in which the approximation will be studied) have been defined. In the second and third chapter, main results of this thesis have been given. In the second chapter, firstly, it has been introduced Bergman and weighted Bergman spaces. Then, it has been investigated the definition and some properties of Faber polynomials on infinite domains. After that, an integral representation on infinite domains with a quasiconformal boundary has been obtained. By using this integral representation, the possibility of the approximation to functions in Bergman spaces by their Faber series has been proved. Finally, the uniqueness of the expantion to the series has been investigated and the rate of the approximation has been evaluated. In the final chapter, results obtained in the previous chapter have been generalized to the weighted Bergman spaces.en_US
dc.language.isoturen_US
dc.publisherBalıkesir Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBergman Uzayı
dc.subjectKvazikonform Eğri
dc.subjectKvazikonform Yansıma
dc.subjectKvazidisk
dc.subjectFaber Polinomu
dc.subjectGenelleşmiş Faber Serisi
dc.subjectBergman Space
dc.subjectQuasiconformal Curve
dc.subjectQuasiconformal Reflection
dc.subjectQuasidisk
dc.subjectFaber Polynomial
dc.subjectGeneralized Faber Series
dc.titleFaber ve genelleşmiş faber polinomlarının yaklaşım özelliklerien_US
dc.title.alternativeApproximation properties of faber and generalized faber polynomialsen_US
dc.typedoctoralThesisen_US
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster