Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaleli, Alirıza
dc.contributor.authorAkolaş, Halil İbrahim
dc.date.accessioned2024-08-13T11:12:23Z
dc.date.available2024-08-13T11:12:23Z
dc.date.issued2023en_US
dc.identifier.issn1532-5008 / 1532-5016
dc.identifier.urihttps://doi.org/10.1080/15325008.2023.2189756
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14994
dc.descriptionAkolaş, Halil İbrahim (Balikesir Author)en_US
dc.description.abstractPrecise estimating battery state-of-charge (SOC) is an important factor in determining vehicle range in an electric or hybrid vehicle. However, the parameters of battery are highly dependent on environmental conditions such as temperature. One of the main drawbacks in battery SOC estimation methods by using existing approaches is inability to adapt to the variable environmental operating conditions. In this study, a hybrid technique which combines the Kalman filter and recursive autoregressive exogeneous moving average model is proposed for the online battery parameters estimation. To design robust SOC estimation to varying battery parameters, the parameters of Kalman filter are optimized with the radial movement optimization metaheuristic algorithm. The proposed approach is implemented considering both different temperatures (0 °C, 25 °C, and 40 °C) and driving test cycles, UDDS, LA-92, and US06. Second-order RC battery equivalent model-based approach are compared with the proposed method, and the result shows that the proposed method is better than the conventional method in the aspects of average statistical parameters for all the driving test cycles.en_US
dc.language.isoengen_US
dc.publisherTaylor and Francis Inc.en_US
dc.relation.isversionof10.1080/15325008.2023.2189756en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectDriving Cycle Testsen_US
dc.subjectKalman Filter With Optimized Parametersen_US
dc.subjectLithium-Ion Batteryen_US
dc.subjectRadial Movement Optimizationen_US
dc.subjectState Of Charge Estimation Modelen_US
dc.titleRecursive armax-based global battery soc estimation model design using kalman filter with optimized parameters by radial movement optimization methoden_US
dc.typearticleen_US
dc.relation.journalElectric Power Components and Systemsen_US
dc.contributor.departmentBalıkesir Meslek Yüksekokuluen_US
dc.contributor.authorID0000-0002-3234-5922en_US
dc.contributor.authorID0000-0002-3153-8044en_US
dc.identifier.volume51en_US
dc.identifier.issue11en_US
dc.identifier.startpage1027en_US
dc.identifier.endpage1039en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster