dc.contributor.author | Testici, Ahmet | |
dc.date.accessioned | 2021-04-05T11:52:56Z | |
dc.date.available | 2021-04-05T11:52:56Z | |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 0031-5303 | |
dc.identifier.issn | 1588-2829 | |
dc.identifier.uri | https://doi.org/10.1007/s10998-019-00288-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/11392 | |
dc.description.abstract | In this paper we investigate some properties of approximation polynomials in particular de la Vallee-Poussin means, Fejer means and partial sums of Fourier series in weighted Lebesgue spaces with variable exponent. In addition to these we prove a simultaneous type theorem and some theorems on the equivalence of modulus of smoothness and the K-functional in weighted Lebesgue space with variable exponent. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s10998-019-00288-z | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Trigonometric Polynomial | en_US |
dc.subject | Lipschitz Class | en_US |
dc.subject | De La Vallee-Poussin Mean | en_US |
dc.subject | Fourier Series | en_US |
dc.subject | Muckenhoupt Weight | en_US |
dc.subject | Best Approximation | en_US |
dc.title | On derivative of trigonometric polynomials and characterizations of modulus of smoothness in weighted Lebesgue space with variable exponent | en_US |
dc.type | article | en_US |
dc.relation.journal | Periodica Mathematica Hungarica | en_US |
dc.contributor.department | Fen Bilimleri Enstitüsü | en_US |
dc.contributor.authorID | 0000-0002-1163-7037 | en_US |
dc.identifier.volume | 80 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 59 | en_US |
dc.identifier.endpage | 73 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrenci | en_US |