Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCeryan, Nurcihan
dc.contributor.authorSamui, Pijush
dc.date.accessioned2021-04-01T07:00:20Z
dc.date.available2021-04-01T07:00:20Z
dc.date.issued2020en_US
dc.identifier.issn1866-7511
dc.identifier.issn1866-7538
dc.identifier.urihttps://doi.org/10.1007/s12517-020-5273-4
dc.identifier.urihttps://hdl.handle.net/20.500.12462/11364
dc.descriptionCeryan, Nurcihan (Balikesir Author)en_US
dc.description.abstractUniaxial compressive strength (UCS) of rock material is very important parameter for rock engineering applications such as rock mass classification, numerical modelling bearing capacity, mechanical excavation, slope stability and supporting with respect to the engineering behaviors' of rock. UCS is obtained directly or can be predicted by different methods including using existing tables and diagrams, regression, Bayesian approach and soft computing methods. The main purpose of this study is to examine the applicability and capability of the Extreme Learning Machine (ELM), Minimax Probability Machine Regression (MPMR) for prediction of UCS of the volcanic rocks and to compare its performance with Least Square Support Vector Machine (LS-SVM). The samples tested were taken from the volcanic rock masses exposed at the eastern Pontides (NE Turkey). In the soft computing model to estimate UCS of the samples investigated, porosity and slake durability index were used as input parameters. In this study, the root mean square error (RMSE), variance account factor (VAF), maximum determination coefficient value (R-2), adjusted determination coefficient (Adj. R-2) and performance index (PI), regression error characteristic (REC) curve and Taylor diagram were used to determine the accuracy of the ELM, MPMR and LS-SVM models developed.en_US
dc.language.isoengen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.isversionof10.1007/s12517-020-5273-4en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectUniaxial Compressive Strengthen_US
dc.subjectVolcanic Rocken_US
dc.subjectExtreme Learning Machineen_US
dc.subjectMinimax Probability Machine Regressionen_US
dc.subjectLeast Square Support Vector Machineen_US
dc.subjectPorosityen_US
dc.subjectSlake Durability Indexen_US
dc.titleApplication of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degreeen_US
dc.typearticleen_US
dc.relation.journalArabian Journal of Geosciencesen_US
dc.contributor.departmentBalıkesir Meslek Yüksekokuluen_US
dc.identifier.volume13en_US
dc.identifier.issue7en_US
dc.identifier.startpage1en_US
dc.identifier.endpage18en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster