Structure of Ethyl [3-(4-chlorophenyl)-5-methyl-4*H*-1,2,4-triazol-4-yl]carbamate

(the late) Sebahat AKIN,*† Erol ASKER,*†† and Metin AKIN**

*Department of Chemistry Education, Necatibey Faculty of Education, Balikesir University, 10100 Balikesir, Turkey

**Department of Environmental Engineering, Faculty of Engineering and Architecture, Balikesir University, 10615 Cagis-Balikesir, Turkey

The title compound, $C_{12}H_{13}ClN_4O_2$, was prepared by the reaction of ethyl 2-(1-ethoxyethylidene)hydrazinecarboxylate with 4-chlorobenzohydrazide. The molecular structure and packing are stabilized by an N-H…N intermolecular hydrogenbond and a partial π - π overlap of the aromatic rings.

(Received November 29, 2007; Accepted January 28, 2008; Published on web April 2, 2008)

Triazoles are one important class of heterocyclic compounds with important biological and pharmacological properties. A wide range of substituted triazole derivatives exhibit biological activities, such as herbicides, bactericides, pesticides and fungicides.^{1,2} The title compound (I, Fig. 1) was synthesized to investigate its possible biological activities. The two-step synthesis of I involves, first, amide formation, and then cyclization reactions. In a 50 ml round-bottom flask fitted with a magnetic stir bar, 0.870 g (5 mmol) of ethyl 2-(1-ethoxy ethyli-dene)hydrazinecarboxylate, which was prepared according to a literature procedure,³ was mixed with 0.853 g (5 mmol) of 4-chlorobenzohydrazide (Fluka). The mixture was heated to melt in an oil bath at around 110 - 115°C and refluxed for an additional 2 h at 130°C. Thereafter, the mixture was allowed to cool to the room temperature to give a colorless, viscous oil. A 5 ml portion of petroleum ether was added to the flask and left standing overnight at $0 - 2^{\circ}C$. The precipitate was filtered and washed with alcohol, dried in vacuo and recrystallized from dichloromethane/abs. ethanol (1:1 v/v) to give 0,754 g of I (54% yield); m.p., 192 - 193°C.

A colorless block crystal of I having approximate dimensions of $0.50 \times 0.40 \times 0.20$ mm was selected for X-ray diffraction studies. The crystal and experimental data are given in Table 1.

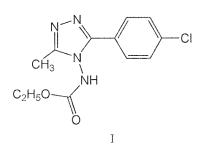


Fig. 1 Chemical structure of I.

[†] Deceased May 2007.

^{††} To whom correspondence should be addressed.

E-mail: asker@balikesir.edu.tr

The atomic coordinates and equivalent isotropic displacement parameters are presented in Table 2. All non-hydrogen atoms were refined anisotropically. All H atoms were fixed geometrically, except for H12, which was located from a difference Fourier map and refined isotropically. Geometrically fixed H atoms were allowed to ride on their corresponding parent atoms with C-H distances in the range of 0.93 - 0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ of the parent atom for the methyl groups and $1.2U_{eq}(C)$ for the remainder. The methyl group attached to C10 exhibits a disorder of the H-atoms. It was

Table 1 Crystal and experimental data

www.ccdc.cam.ac.uk/data_request/cif.

5 1	
Empirical formula: C ₁₂ H ₁ Formula weight: 280.71 Wavelength: 0.71073 Å	3Cl1N4O2
Temperature: 295(2)K	
Space group: $P2_1/a$	Z = 4
a = 12.2846(6)Å	
b = 10.6712(4)Å	$\beta = 117.903(2)^{\circ}$
c = 12.4322(5)Å	
V = 1440.28(11)Å ³	
$D_{\rm x} = 1.295 \text{ g/cm}^3$	
No. of reflections used $=$	3983
$2\theta_{\rm max} = 60.2^{\circ}$ with Mo K_{α}	
R = 0.082	
$(\Delta/\sigma)_{\rm max} < 0.003$	
$(\Delta \rho)_{\rm max} = 0.30 \ {\rm e}{\rm \AA}^{-3}$	
$(\Delta \rho)_{\rm min} = -0.26 \text{ e} \text{\AA}^{-3}$	
Measurement: Rigaku RA diffractometer	AXIS-RAPID S area-detector
Data collection and cell re	efinement: PROCESS
Structure determination: of	direct method (SIR92)
Structure refinement: full (SHELXL97)	matrix least squares on F^2
Molecular graphics: ORT	EP-3 for Windows and PLUTON
Publication material: Win	IGX
for this paper. These data	the supplementary crystallographic data can be obtained free of charge from The peraphic Data Centre via
Cambridge Crystallo	ographic Data Centre via

Table 2 Atomic coordinates and equivalent isotropic displacement parameters of the non-hydrogen atoms. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor

Atom	x	у	z	$U_{ m eq}$
Cl1	0.35144(9)	0.02449(10)	0.84581(9)	0.0914(3)
N8	0.66022(19)	0.25150(17)	0.56003(19)	0.0529(5)
N9	0.73929(19)	0.24632(17)	0.50820(19)	0.0535(5)
N11	0.74796(18)	0.06767(16)	0.59540(17)	0.0470(4)
N12	0.7898(2)	-0.04890(16)	0.64708(19)	0.0533(5)
O14	0.9230(2)	-0.16744(16)	0.79300(16)	0.0719(6)
O18	0.9240(3)	0.04126(18)	0.82410(19)	0.0913(8)
C1	0.4467(3)	0.0564(3)	0.7810(2)	0.0607(6)
C2	0.4719(3)	-0.0366(2)	0.7194(2)	0.0611(6)
C3	0.5462(3)	-0.0102(2)	0.6663(2)	0.0568(6)
C4	0.5960(2)	0.1093(2)	0.6753(2)	0.0482(5)
C5	0.5692(2)	0.2010(2)	0.7392(2)	0.0567(6)
C6	0.4953(3)	0.1752(3)	0.7916(2)	0.0629(6)
C7	0.6672(2)	0.14344(18)	0.6125(2)	0.0463(5)
C10	0.7916(2)	0.1362(2)	0.5311(2)	0.0500(5)
C13	0.8847(3)	-0.0494(2)	0.7617(2)	0.0595(6)
C15	1.0229(4)	-0.1849(3)	0.9161(3)	0.0979(12)
C16	1.1425(5)	-0.1667(7)	0.9202(6)	0.175(3)
C17	0.8804(3)	0.0880(3)	0.4921(3)	0.0681(7)

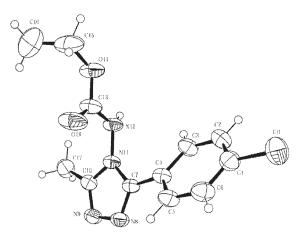


Fig. 2 Structure of (I) with the atom numbering scheme (displacement ellipsoids drawn at the 40% probability level; arbitrary spheres for the H atoms; only one orientation for the disordered methyl group is shown).

Table 3 Hydrogen-bond geometry (Å, °)

D-H…A	D-H	Н…А	D····A	D-H···A
N12-—H12…N9 ⁱ	0.80(3)	2.03(3)	2.827(3)	175(4)
C 1 (')	. 2/2 1/2	. 1		

Symmetry code: (i) -x+3/2, y-1/2, -z+1.

treated as an idealized disordered methyl group over two positions with H-atoms separating from each other by 60° and fixing the site occupancy factor at 0.5. The bond lengths and angles of the five-membered triazole and chlorine-substituted six-membered benzene rings in I (Fig. 2) are in agreement with those of related compounds.^{4,5} The triazole and benzene ring systems are planar within themselves, with r.m.s. deviations of 0.0039 Å for the triazole and 0.0022 Å for the benzene rings. The dihedral angle between them is $36.13(13)^{\circ}$. The plane of the carbamate substituent is almost perpendicular to that of the triazole ring, as indicated by the C10-N11-N12-C13 and C7-N11-N12-C13 torsion angles of 88.2(3)° and -82.3(3)°, respectively. Rings A (N8-N9-C10-N11-C7) and B (C1/C6) of the two neighboring molecules at (x, y, z) and (1/2+x, 1/2-y, z), respectively, exhibit a partial π - π overlap, as indicated by the dihedral angle of 5.90(20)° between their planes with a ring centroid separation of 4.212(2)Å and an interplanar spacing of ca. 3.538 Å, corresponding to a ring-centroid offset of ca 2.285 Å. Additionally, intermolecular N12-H12-N9 hydrogen bonds contribute to the stacking by generating a chain along the b axis (Table 3).

References

- 1. E. H. Pommer, K. Gutsche, and Y. Hartleben, U. S. Patent **1978**, 4104399.
- B. N. Goswami, J. C. S. Kataky, and J. N. Baruah, J. Heterocycl. Chem., 1984, 21, 1225.
- M. Pesson, S. Dupin, and M. Antoine, *Bull. Soc. Chim. Fr.*, 1962, 1364.
- L.-X. Zhang, J.-Y. Jin, S.-N. Zhou, H.-P. Xiao, and A.-J. Zhang, Acta Cryst., 2005, E61, 04340.
- T. Akhtar, S. Hameed, X. Lu, K. A Yasin, and M. H. Khan, *Anal. Sci.*, **2006**, *22*, x307.