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Abstract In this present paper, we define g-o-preir-
resolute, g-f-preirresolute, contra g-o-preirresolute and
contra g-f-preirresolute functions on generalized topo-
logical spaces. We give some examples of this definitions.
We investigate some properties and characterizations of
this functions.
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Introduction

Csaszar [2] introduced generalized open sets in 1997.
Subsequently, he [3] defined generalized topology and
generalized continuity in 2002. Also, (gx, gy)-open func-
tions [4] were introduced in 2003 and strong generalized
topology [5] was presented in 2004. g-semi-open sets, g-
preopen sets, g-o-open sets and g-f-open sets [6] were
introduced by Csaszar in 2005. Also he [7] showed how the
definition of the product of generalized topologies in 2009.
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In 2012, Jayanthi [8] introduced contra continuity on
generalized topological space. Furthermore, Min [9] de-
fined (o, gy)-continuous functions, (o,gy)—continuous
functions, (7, gy)-continuous functions and (f, gy)-con-
tinuous functions on generalized topological spaces in
2009. Additionally, Bai and Zuo [1] introduced g-o-ir-
resolute functions in 2011. In 2009, Shen [10] studied the
relationship between the product and some operations
(0,7, and f§) of generalized topologies. Our aim in this
paper, is to introduce g-o-preirresolute, g-f-preirresolute,
contra g-a-preirresolute, contra g-f-preirresolute on gen-
eralized topological spaces. Also we obtain some proper-
ties and characterizations of this functions.

Preliminaries

Definition 2.1 [3] Let X # () and g C X. Then g is called
a generalized topology (briefly; GT) on X iff () € g and G;
€ g fori €I+ 0implies G = J,.; G; € g. The pair (X, g)
is called a generalized topological space (briefly; GTS) on
X. The elements of g are called g-open sets and their
complements are called g-closed sets.

Definition 2.2 [3] Let (X, g) be a generalized topological
space and A C X.

(1) The closure of A is defined as follows:
co(A) = ﬂ{F : Fisg-closed, A C F}.
(2) The interior of A is defined as follows:

i(A) = U{G : Gisg-open,G C A}.

Theorem 2.3 [3] Let (X, g) be a generalized topological
space. Then the following hold:
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(1) c,(A) = X — ig(X — A).
Q) i(A) =X —c (X —A) .

Definition 2.4 [6] Let (X, g) be a generalized topological
space and A C X. A is said to be

(1) g-semi-open if A C ¢,(is(A));

(2) g-preopen if A C i,(ce(A));

(3) g-a-open if A Cig(cg(ig(A)));

(4)  g-P-open if A C cy(ig(ce(A))).

The complement of g-semi-open (resp. g-preopen, g-o-
open, g-f-open) is said to be g-semi-closed (resp. g -pre-
closed, g-a-closed, g-f-closed). The set of all g-semi-open
sets (resp. g-preopen sets, g-a-open sets, g-fi-open sets) is
denoted by o(g) (resp. (n(g),(g), B(g))-

The closure of g-semi-closed (resp. g-preclosed, g-o-
closed, g-f-closed) sets is denoted by c,(X) (resp. cr(X),
cy(X), cp(X)). Also the interior of g-semi-open (resp. g-
preopen, g-o-open, g-f-open) sets is denoted by i,(X)
(tesp. ix(X), iz(X), i5(X)).

Definition 2.5 [4] Let (X,gx) and (Y,gy) be GTS’s.
Then a function f : X — Y is said to be (gx, gy)-open if
f(U) € gy for each U € gx.

Definition 2.6 [3] Let (X,gx) and (Y,gy) be GTS’s.
Then a function f : X — Y is said to be (g, gy )-continuous
if f=1(V) € gx for each V € gy.

Definition 2.7 [9] Let (X,gx) and (Y,gy) be GTS’s.
Then a function f : X — Y is said to be

(1) (o, gy)-continuous if f~'(V) is g-a-open in X for
each g-open set V in Y;

(2) (o, gy)-continuous if f~!(V) is g-semi-open in X for
each g-open set V in Y.

(3)  (m, gy)-continuous if f~!(V) is g-preopen in X for
each g-open set V in Y.

(4) (B, gy)-continuous if f~'(V) is g-B-open in X for
each g-open set V in Y.

Definition 2.8 [8] Let (X,gx) and (Y,gy) be GTS’s.
Then a function f : X — Y is said to be

(1)  contra (gx, gy)-continuous if f~! (V) is g-closed in X
for each V € gy.

(2) contra (a, gy)-continuous if f~!(V) is g-a-closed in
X for each g-open set V in Y.

(3) contra (o, gy)-continuous if f~'(V) is g-semi-closed
in X for each g-open set V in Y.

(4) contra (r, gy)-continuous if (V) is g-preclosed in
X for each g-open set V in Y.

(5) contra (B, gy)-continuous if f~!(V) is g-B-closed in
X for each g-open set V in Y.
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Definition 2.9 [5] Let gbe a GT on a set X # (). Then g is
said to be strong if X € g.

Definition 2.10 [7] Let K # () be an index set, X; # ) for
k € K and X = [],.x Xi the cartesian product of the sets
Xi. Also py : X — X; is the projection.

Let g be a given GT on X; for k € K. Then g is called
the product of the GT’s g;.

Proposition 2.11 [10] If every gx, is strong then each py
is (gx,gx, )-continuous (resp.(o(gx),o(gx, ))-continuous,
(o(gx),0(gx,))-continuous,  (n(gx), n(gx,))-continuous,
(B(gx), P(gx,))-continuous ) for k € K.

Theorem 2.12 [7] Let G = [[;.x G. Then

(1) If K is finite and every Gy is g-semi-open, then G is
g-semi-open set.

(2) If K is finite and every Gy, is g-preopen, then G is g-
preopen set.

(3) If K is finite and every Gy, is g-o-open, then G is g-o-

open set.

4) IfK is finite and every Gy is g-f-open, then G is g-[-
open set.

Definition 2.13 [1] A function f : X — Y is said to be g-

a-irresolute if £~'(V) is g-z-open in X for every g-a-open
set V of Y.

g-a-Preirresolute and g-f-preirresolute functions

Definition 3.1 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be g-a-preirresolute if f~1(V)
is g-o-open in X for every g-preopen set V of Y.

Example 3.2 Let X = {x,y}, Y = {a,b}, gx = P(X) and
gy = {0,{a}}. Then we obtain n(gy) = {0, {a}}.
[ (X, gx) — (Y,gy) such that f(x) = a,f(y) = b.
Since f~'(#) =0 and f~'({a}) = {x} are g-a-open
subsets of X, then f is g-a-preirresolute.

Definition 3.3 Let (X, gx) and (Y, gy) be GTS’s. Then a

function f : X — Y is said to be g-B-preirresolute if f~1(V)
is g-f--open in X for every g-preopen set V of Y.

Example 3.4 LetX = {x,y},Y ={a,b,c}, gx = {0, {x}}
and gy = {0, {a},{a,b}}. Then we obtain n(gy) = {0,
{a},{a,b}}.

f:(X,gx) — (¥, gy) such that f(x) =f(y) = a.

Since f~1(0) =0, f'({a}) =X and f~'({a,b}) =X

are g-fi-open subsets of X, then f is g-f-preirresolute.

Definition 3.5 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be g-o-preirresolute at x € X
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if there exists a g-a-open set U of X containing x such that
f(U) C V for each g-preopen set V of Y containing f(x).

Definition 3.6 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be g-f-preirresolute at x € X
if there exists a g-f-open set U of X containing x such that
f(U) C V for each g-preopen set V of Y containing f(x).

Theorem 3.7 Ler (X,gx), (Y,gy) be GTS’s and f : X —
Y be a function. The following conditions are equivalent:

(1) f is g-o-preirresolute;

(2) For each x € X and each g-preopen set V of Y
containing f(x), there exists a g-a-open set U of X
containing x such that f(U) C V;

B) V) C ileglighf (V) for every g-preopen set
VofY;

@) fYV) is g-a-closed in X for every g-preclosed set V
of Y;

(5)  colig(cs(F1(V)))) CfYea(V)) for every subset V
of Y;

(6)  f(cg(iglcg(V)))) € ex(f(U)) for every subset U of
X.

Proof (1) = (2). Letx € X and V be any g-preopen set
of Y containing f(x). By hypothesis, f~!(V) is g-a-open in
X and contains x. Suppose U = f~!(V), then U is g-a-open
set in X containing x and f(U) C V.

(2) = (3). Let V be any g-preopen set of Y and
x € f~1(V). By hypothesis, there exists a g-a-open set U of
X such that f(U) C V. Hence we obtain

x € U Cig(eg(i,(U))) C ig(cg(ig(fil(v))))

As a consequence, [ (V) Cig(ce(ig(f~1(V)))).
(3) = (4). Let V be any g-preclosed of Y. Then U =
Y —V is g-preopen in Y. By (3), we have f~1(U) C
ig(co(ig(f~1(U)))). Therefore
SO =Y = V) =X = f71(V) Cigleg(ig(F7(V))))
=X — cy(igleg (' (V))))-

As a consequence, we obtain f (V) is g-a-closed set in X.

(4) = (5). Let V be any subset of Y. Since c¢,(V) is g-
preclosed subset of Y, then f~!(c,(V)) is g-a-closed in X
by (4). Hence

cglig(cg(F~ (ca(V))))) S (er (V).

Therefore we obtain c,(ig(cg(F1(V)))) C £ (ca(V)).
(5) = (6). Let U be any subset of X. By hypothesis, we
have

calig(ce(U))) € celigles (7 (F(U))))) S ealF(U)))-

As a consequence, f(cg(ig(cg(U)))) C cx(f(U)).

(6) = (1). Let V be any g-preopen subset of Y. f~! (Y —
V) =X —f~1(V) is a subset of X and by hypothesis, we
obtain

Flegligleg(FTH (Y = V) S ex(F(F' (Y = V)

Cen(Y=V)=Y —in(V)

=Y-V
and so
X —ig (e (i (' (V) = coligleg(X =71 (V) =
cg(ig(cg(f™ ( =-V))<f l(f(cg(’g(cg(f (Y —=v)))))

) €
CriY-vy=x—r(v)

Thus (V) Ci,(c,(ig(f 71 (V)))) and f~1(V) is g-o-open
set in X. As a consequence, f is g-a-preirresolute. (]

Theorem 3.8 Let (X,gx), (Y,gy) be GTS’s and f : X —
Y be a function. The following conditions are equivalent:

(1) fis g-f-preirresolute;

(2) For each x € X and each g-preopen set V of Y
containing f(x), there exists a g-f-open set U of X
containing x such that f(U) C V;

3) fYv)c cg(ig(cg(f’l(V))))for every g-preopen set

VofY;

@) f V) is g-B-closed in X for every g-preclosed set
VofY;

(5)  ig(cgig(FH(V)))) Cf " (cn(V)) for every subset V
of Y;

6)  flig(ce(ie(U)))) C cx(f(U)) for every subset U of X.

Proof 1Tt is proved similar to the proof of Theorem 3.7.
O

Theorem 3.9 Ler (X,gx), (Y,gy) be GTS’s andf : X —
Y be a function. The following conditions are equivalent:

(1) f is g-o-preirresolute;

(2) fU(F) is g-a-closed in X for every g-preclosed set F
of Y;

3)  f(ca(A)) C ca(f(A)) for every subset A of X;

@ c,(f1(B)) Cf ' (ca(B)) for every subset B of Y;

(5)  fYix(B)) Ciy(f~'(B)) for every subset B of Y

(6) f is g-a-preirresolute at every x € X.

Proof (1) = (2). It is obvious from Theorem 3.7.

(2) = (3). Let A C X. Then c,(f(A)) is a g-preclosed
set of Y. By hypothesis, f~!(c,(f(A))) is a g-a-closed set.
Now c,(A) C clf7'(f(A)) S culf ' (eal(f(A)))) =
S (cx(f(A))). Hence f(cu(A)) C ex(f(A)).

(3) = (4). Let B C Y. Then f~!(B) C X. By hypothesis,
Flealf (B))) € ex(f (7 (B)) € ca(B). Hence c,(f~'(B))

Y
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. Let V be any g-preopen set of Y, then
By hypothesis, f~1(V)=f"1(i.(V)) C

f~Y(V) is a g-a-open set of X. As a consequence, f is g-o-
preirresolute.

(1) = (6). Let f is g-o-preirresolute, x € X and any g-
preopen set V of Y containing f(x). Then x € f~!(V) and
f~Y(V) is g-a-open set in X. Suppose U = f~!(V), then U
is a g-o-open set of X and f(U) C V. Therefore f is g-a-
preirresolute for each x € X. O

Theorem 3.10 Ler (X, gx), (Y,gy) be GTS’sandf : X —
Y be a function. The following conditions are equivalent:

(1) f is g-P-preirresolute;

(2)  fU(F) is g-B-closed in X for every g-preclosed set F
of Y;

(3)  f(cp(A)) C ca(f(A)) for every subset A of X;

@) cs(FY(B)) Cf ' (ca(B)) for every subset B of Y;

(5) £ 'iz(B)) Cig(f~"(B)) for every subset B of Y;

(6) f is g-P-preirresolute at every x € X.

Proof 1t is proved by a similar way in Theorem 3.9.
]

Theorem 3.11 Let f:X — Y be a function from two
GTS’s. Then f is g-a-preirresolute if f~'(V) C
ig(ce(ig(f~1(ir(V))))) for every g-preopen subset V of Y.

Proof Let V be g-preclosed set of Y. Then Y — V is g-
preopen set in Y. By hypothesis, /=1 (Y — V) = X — f~1(V)
C igleglig(fF (i (Y = V))))) = ig(ce (i (F (Y = V)))) =
X —colig(ce(f71(V)))). Hence we obtain cg(i,(cq
(f~1(V)))) CfY(V). Therefore f~! (V) is g-a-closed set in
X. As a consequence, f is g-o-preirresolute from Theorem
3.7(4). O

Theorem 3.12 Let f: X — Y be a function from two
GTS’s. Then f is g-PB-preirresolute if f~'(V) C
coig(ce(f ' (ir(V))))) for every g-preopen subset V of Y.
Proof 1t is similar to Theorem 3.11. Ol

Theorem 3.13 Let f: X — Y be a function from two
GTS’s and gx be a strong. f is g-o-preirresolute if the
graph function g : X — X x Y defined by g(x) = (x,f(x))
for each x € X, is g-a-preirresolute.

Proof Let x € X and V be any g-preopen set of ¥ con-
taining f(x). Then X x V is a g-preopen set of X x Y by
Theorem 2.12 and contains g(x). Since g is g-o-preirresolute,
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there exists a g-o-open U of X containing x such that g(U) C
X x Vand so f(U) C V. Thus f is g-o-preirresolute. d

Theorem 3.14 Let f:X — Y be a function from two
GTS’s and gx be a strong. f is g-f-preirresolute if the
graph function g : X — X X Y defined by g(x) = (x, f(x))
for each x € X, is g-f-preirresolute.

Proof The proof is similar to that of Theorem 3.13 [J

Theorem 3.15 Let gy, be a given GT on Y for k € K and
gy, be a strong. If a function f : X — [[ Yy is g-a-preir-
resolute, then py of : X — Y is g-o-preirresolute for each
k € K, where py is the projection of [ Yy onto Y.

Proof Let V; be any g-preopen set of Y. pi is
(n(gy), m(gy,))-continuous from Proposition 2.11 since gy,
is strong and so p; '(V) is g-preopen set. Since f is g-o-
preirresolute, £~ (p; ' (Vi) = (px of) (Vi) is a g-a-open.
As a consequence, we have py o f is g-a-preirresolute for
each k € K.

O

Theorem 3.16 Let gy, be a given GT on Yy for k € K and
gy, be a strong. If a function f:X — [ Yx is g-p-preir-
resolute, then pyof : X — Y is g-f-preirresolute for each
k € K, where py is the projection of []Yx onto Yy.

Proof 1Tt is proved similar to that of Theorem 3.15.
]

Theorem 3.17 If the function f : [[ Xy — || Yx defined
by f({x}) = {filx)}  for each {x} €[ Xk is g-o-
preirresolute, then fi : X — Y is  g-a-preirresolute for
each k € K.

Proof Let kg € K be an arbitrary fixed index and Vi, be
any g-preopen set of Yy,. Then [] Y, X Vj, is g-preopen in
[ Y« by Theorem 2.12, where ko # m € K. Since f is g-o-
preirresolute, f~ ([T Y x Vi,) = T[T Xm X fi,'(Vi,) is g-2-
open in []X; and f'(Vy,) is g-a-open in Xj,. As a con-
sequence, f, 1s g-o-preirresolute. O

Theorem 3.18 If the function f : [[Xx — || Yx defined
by f({x}) = {fi(xi)}  for each {xi} € [[ Xy . is g-p-
preirresolute, then f; : X — Y is g-f-preirresolute for
each k € K.

Proof 1Tt is proved by a similar way in Theorem 3.17. [J

Theorem 3.19 Iff: X — Y is g-a-preirresolute and A is
a g-a-open in X , then the restriction f|A:A — Y is g-a-
preirresolute.

Proof Let V be any g-preopen set in Y. Then we have
f~1(V) is a g-a-open set in Y. Since the set A is a g-o-open
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set, we have (flA)"'(V)=Anf (V) is g-a-open.
Therefore f|A is g-a-preirresolute. O

Theorem 3.20 [ff : X — Y is g-f-preirresolute and A is
g-open in X , then the restriction flA:A —Y is g-p-
preirresolute.

Proof It is proved by a similar way of that of Theorem
3.19. O

Definition 3.21 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be g-preirresolute if £~ (V) is
g-preopen in X for every g-preopen set V of Y.

Theorem 3.22 Let (X, gx), (Y,gy) and (Z,gz) be GTS’s.
If f:X—Y is g-a-preirresolute and g:Y — Z is g-
preirresolute, then the composition gof : X — Z is g-o-
preirresolute.

Proof Let V be any g-preopen subset of Z. Since g is g-
preirresolute, g~'(V) is g-preopen in Y. Since f is g-o-
preirresolute, then ! (g~ (V)) = (g o f) (V) is g-o-open
in X. As a consequence, g o f is g-a-preirresolute. O

Theorem 3.23 Ler (X, gx), (Y,gy) and (Z,g7) be GTS'’s.
If f:X—Y is g-P-preirresolute and g:Y — Z is g-
preirresolute, then the composition gof :X — Z is g-p-
preirresolute.

Proof 1Tt is similar to that of Theorem 3.22 O

Definition 3.24 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f: X — Y is said to be g-o-pre-continuous if
f~Y(V) is g-preopen in X for every g-a-open set V of Y.

Definition 3.25 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be almost g-o-irresolute if
f~Y(V) is g-B-open in X for every g-a-open set V of Y.

From the definitions stated above, we obtain the fol-
lowing diagram:

g-a-preirresolute — g-preirresolute — g¢--preirresolute

N 1 e

g-a-irresolute — g-a-pre-continuity — almost g-«-irresolute

Remark 3.26 The following examples enables us to re-
alize that none of these implications is reversible.

Example 327 Let X=Y=/{a,b,cd} gx =
{0,{a},{d},{b,c},{a,b,c},{b,c,d},{a,d}} and
gy = {0,Y,{b}}. The identity function f: X — Y is g-o-
pre-continuous function, but it is not g-a-irresolute. Also, f
is g-preirresolute, but it is not g-a-preirresolute.

Example 3.28 Let X =Y ={a,b,c,d}, gx = {0,X,{a},
{c},{a,c}} and gy = {0,Y,{c,d}}. The identity function
f : X — Y is almost g-a-irresolute function, but it is neither
g-o-pre-continuous nor g-f-preirresolute.

Example 329 Let X=Y={a,b} and gx=gy=
{0,{a}}. We define the function f:X — Y such that
f(a) =f(b) = a. Then f is g-f-preirresolute function, but it
is not g-preirresolute.

Example 3.30 Let X=Y ={a,b,c} and gx =gy =
{0,X,{a},{b,c}}. The identity function f : X — Y is g-o-
irresolute function, but it is not g-a-preirresolute.

Contra g-a-preirresolute and contra
g-pB-preirresolute functions

Definition 4.1 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be contra g-o-preirresolute if
f~1(V) is g-a-closed in X for every g-preopen V of Y.

Example 4.2 Let X={x,y}, Y={a,b,c}, gx=
{0,{y},X} and gy = {0, {a},{c}, {a,c}}. Then we obtain
TE(gy) = {(Z)v {a}7 {C}v {a> C}}

f:(X,gx) — (Y, gy) such that
fx)=a.f(y) =0

Since f7'(0) =0. f'({a}) = {x}. f'({c}) =0 and
f'({a,c}) = {x} are g-a-closed subsets of X, then f is
contra g-o-preirresolute.

Definition 4.3 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be contra g-f-preirresolute if
f~1(V) is g-B-closed in X for every g-preopen V of Y.

Example 4.4 LetX = {x,y,z}, Y = {a,b}, gx = {0, {x}}
and gy = {0, {a}}. Then we obtain n(gy) = {0, {a}}.
f:(X,gx) — (Y,gy) such that

fx) =a.f(y) =f(z) =b.

Since f~!(0) = 0 and f~!({a}) = {x} are g-B-closed sub-
sets of X, then f is contra g-f-preirresolute.

Definition 4.5 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be contra g-a-preirresolute at
x € X if there exists a g-a-open set U containing x such that
f(U) C V for each g-preclosed V of Y containing f(x).

Definition 4.6 Let (X, gx) and (Y, gy) be GTS’s. Then a
function f : X — Y is said to be contra g-f-preirresolute at
x € X if there exists a g-f-open set U containing x such that
f(U) C V for each g-preclosed V of Y containing f(x).

’r @ Springer
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Theorem 4.7 Let f:X — Y be a function from two
GTS’s. Then the following are equivalent:

(1) f is contra g-a-preirresolute;

(2)  fUF) is g-a-open set in X for each g-preclosed set
FofY;

(3) For each x € X and each g-preopen set V of Y with
f(x) €V, there exists g-a-closed set U in X such that
x& U and f~1(V) C U;

(4) f is contra g-a-preirresolute at any x € X;

(5) V) Cin(f~Y(V)) for any g-preclosed set V of Y;

6) e, (f1(U)) CfYU) for any g-preopen set U of Y;

() exlf 7 (ix(A))) CF(in(A)) for any A C Y;

®) ' (cx(4)) C inlf " (cx(4)) for any A C V.

Proof (1) = (2). Let F be a g-preclosed set in Y. Then
Y — F is a g-preopen set in Y. By (1), f~' (Y — F) = X—
f~U(F) is a g-a-closed set in X. Hence f~!(F) is a g-a-open
set in X.

(1) = (3). Letx € X and V be a g-preopen set of ¥ with
f(x) € V. Then x & f~1(V). By (1), f~1(V) is a g-a-closed
set in X. Suppose U =f"'(V). Then f~'(V) C U and
x&U.

(3) = (1). Let V be a g-preopen set of Y. For each
x €f~Y(Y —=V),f(x) € V.By (3), there exists a g-a-closed
set U, in X such that x € U, and f~'(V) C U,. Then X —
U, CX—fY(V)=f"1Y — V). Hence we have

U & U &x-uvycrir-v).
xef~1(Y-V) xef-1(Y-V)

Thus f~1(Y = V) = Uyep-1(y_v) (X — Uy) is a g-a-open set
in X. As a consequence, f (V) is a g-a-closed set in X and
so f is g-a-preirresolute.

(2) = (4). Let x € X and V be a g-preclosed set of ¥
containing f(x). By (2), f~1(V) is a g-a-open set in X
containing x. Put U = f~!(V). Thus we obtain U is a g-o-
open set in X containing x and f(U) C V.

(4) = (5). Let V be a g-preclosed set of Y. For each
x € f~1(V),f(x) € V. By (4), there exists a g-z-open set U
in X containing x such that f(U) CV. Since x€ U
Cf V), we obtain x € i,(f~1(V)). Thus f~1(V)C
(V).

(5) = (6). Let U be a g-preopen set of Y. Then Y — U is
a g-preclosed set of Y. By (5), X —f1(U) =f~1(Y - U)
C LI (Y- U) = (X — (V) =X — ealf (V).
Thus ¢, (f~1(U))) C £~ 1(U).

(6) = (7). Let A C Y. Since i,(A) is a g-preopen set of
Y, by (6), we obtain ¢, (f~'(ir(A))) C £~ (i(A)).

(7)=(8). Let ACY. Then Y—-ACY. By (7),
e (f (i (Y — A))) _Coc(f (Y — cx(A))) = cy(X —
fHex(A)) =X —is(f ' (ca(A))) C f(i(Y —A)) =

Y4
ﬁ @ Springer

i —cn( ) =X—f"cx(A)). Thus f~'(ca(A))

C ix(f ' (ca(A)))-

(8) = (1). Let Vbe a g- preopen setof Y. Then Y — V'is
g-preclosed set of Y. By (8), f~!(c (Y = V)) =f"1(Y —
V) =X—f1(V) Cialf Hex(Y = V) =il (Y = V)
=i,(X—f'(V))=X—c,(f'(V)). Thus we obtain
cx(f~H(V)) C f7Y(V). As a consequence, f~!(V) is a g-a-
closed set in X and f is contra g-a-preirresolute. O

Theorem 4.8 Let f:X — Y be a function from two
GTS’s. Then the following are equivalent:

(1) f is contra g-f-preirresolute;

(2) fUF)is g-B-open set in X for each g-preclosed set
F of Y;

(3) For each x € X and each g-preopen set V of Y with
f(x) €V, there exists g-f-closed set U in X such that
x & Uand f~(V) C U;

(4) f is contra g-f-preirresolute at any x € X,

&) SHV) S

6)  cp(f~(U)) CF(U) for any g-preopen set U of Y;

(1) cp(F 1 (ix(A))) Cf(ix(A)) for any A C Y;

®) [ (ex(A)) Sip(f ' (cx(A))) for any AC Y.

(V) for any g-preclosed set V of Y

Proof 1t is similar to that of Theorem 4.7 O

Theorem 4.9 Let f:X — Y be a function from two
GTS’s. Then the following are equivalent:

(1) fis contra g-o-preirresolute;

(2)  For each g-preclosed set F of Y, f~\(F) is g-a-open

in X;
(3)  f7(B) Cig(cg(ig(f " (ca(B))))) for every subset B
of Y.
Proof (1) < (2) : It is obvious from Definition 4.1 and
Theorem 4.7.
(2)= (3): Let BCY. Since the set c(B) is g-

preclosed in Y, f~1(
F7(en(B)) C igleg(ig(F~" (ca(B)))))-
As a consequence, we obtain
S7H(B) S igleg(ig(f~ (ca(B))))).

(3) = (1) : Let V be a g-preopen in Y. Then ¥ — V is a
subset of Y. By (3),

Y = V) Cligleg(ig(F (en(Y = V)
Hence we obtain

cg(ig(eg(F 1 (V)))) = coligles(F ' (ix(V))))) S /7H(V).
1(V) is g-o-closed. O

cz(B)) is g-o-open and so

As a consequence, [~
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Theorem 4.10 Let f:X — Y be a function from two
GTS’s. Then the following are equivalent:

(1) fis contra g-f-preirresolute;

(2)  For each g-preclosed set F of Y, f~1(F) is g-B-open
in X;

(3)  f7(B) C cylig(ce(f ' (ca(B))))) for every subset B
of Y.

Proof It is proved by a similar way of that of
Theorem 4.9.

O

Theorem 4.11 Let f:X — Y be a function from two
GTS’s. Suppose one of the following conditions hold:

(1) f(ea(A)) Cin(f(A)) for each subset A in X.
(2) ¢, (f(B)) Cf'(in(B)) for each subset B in Y.
(3)  fYcx(B)) Ciy(f Y(B)) for each subset Bin Y.

Then f is contra g-a-preirresolute.

Proof (1)= (2): Let BC Y. Then f~!(B) CX. By
hypothesis, /(cx(f~(B))) C ix(F(f~(B))) C ix(B). Then
FFl (B)) C Fn(B)). Hence eiff~'(B) C
F U f(ca(f~1(B)))) C £ (ix(B)). As a consequence, (2) is
obtained.

(2) = (3): It is obvious from the complement of (2).

Suppose (3) holds: Let B C Y be g-preclosed. Then by
(3), 171 (exlB) C it~ (B)). Thus £~ (B) = £~ (calB))
C iy(f~'(B)). Hence f~!(B) is a g-a-open in X. As a
consequence, we obtain f is contra g-o-preirresolute. [

Theorem 4.12 Let f:X — Y be a function from two
GTS’s. Suppose one of the following conditions hold.:

(1) f(cp(A)) Cir(f(A)) for each subset A in X.
() cs(f~Y(B)) Cf ' (ix(B)) for each subset B in Y.
(3)  f'cx(B)) Cip(f"(B)) for each subset B in Y.

Then f is contra g-[-preirresolute.
Proof 1t is similar to proof of Theorem 4.11 O

Theorem 4.13 Let f: X — Y be a function from two
GTS’s and gx is a strong. f is contra g-a-preirresolute if
the graph function g:X — X XY defined by g(x)=
(x,f(x)) for each x € X, is contra g-a-preirresolute.

Proof Letx € X and V be g-preopen containing f(x) in Y.
Then X x V is a g-preopen set of X x Y by Theorem 2.12
and contains g(x). Then g~'(X x V) is a g-a-closed set in
X. Since g7 1(X x V) =f~1(V), (V) is a g-a-closed set
in X. As a consequence, f is contra g-a-preirresolute. [

Theorem 4.14 Let f:X — Y be a function from two
GTS’s and gx is a strong. f is contra g-f-preirresolute if

the graph function g:X — X XY defined by g(x)=
(x,f(x)) for each x € X, is contra g-f-preirresolute.

Proof 1t is proved similar to that of Theorem 4.13.
|

Theorem 4.15 Let gy, be a given GT on Yy for k € K and
gy, be a strong. If a function f : X — [[ Y is contra g-o-
preirresolute, thenpy o f : X — Yy is contra g-a-preirresolute
for each k € K, where py is the projection of || Yy onto Yy.

Proof Let V; be any g-preopen set of Y. pi is
(n(gy), m(gy,))-continuous from Proposition 2.11 since gy,
is strong and so p; ' (Vi) is g-preopen set. Since f is contra
g-a-preirresolute, £~ (pr ' (Vi) = (pxof) ' (Vi) is a g-o-
closed. As a consequence, we have p; of is contra g-o-
preirresolute for each k € K. (]

Theorem 4.16 Let gy, be a given GT on Y for k € K and
gy, be a strong. If a function f :X — [| Yy is contra g-f-
preirresolute, then pyof :X — Y, is contra g-p-preir-
resolute for each k € K, where py is the projection of ] Y
onto Yj.

Proof 1t is similar to that of Theorem 4.15 U

Theorem 4.17 If the function f: [[ Xy — [[ Y defined
by f({xc}) = {fi(xx)} foreach {xi} € [[ Xk, is contra g-o-

preirresolute, then f; : Xy — Yy is contra g-o-preirresolute
for each k € K.

Proof Let ky € K be an arbitrary fixed index and Vj, be
any g-preopen set of Y;,. Then [] Y, X Vj, is g-preopen in
[1Yc by Theorem 2.12, where ko # m € K. Since f is
contra g-a-preirresolute, f~'([[Ym X Viy) = [[Xm ¥
Ji ' (Vi) is g-o-closed in [T X; and fi, ' (Vy,) is g-o-closed in
Xy,- As a consequence, f, is contra g-a-preirresolute. [

Theorem 4.18 If the function f: [[ Xy — [[ Y« defined

by f({xc}) = {fi(xx)} for each {x;} € [[ X is contra g-
p-preirresolute, then f : X — Yy is contra g-f-preir-
resolute for each k € K.

Proof 1Tt is proved similar to Theorem 4.17. O

Theorem 4.19 If f:X — Y is contra g-a-preirresolute
and A is a g-oclosed in-X, then the restriction f|A:A — Y
is contra g-o-preirresolute.

Proof Let V be any g-preopen set in Y. Then we have
F~1(V) is a g-a-closed set in Y. Since the set A is g-a-closed
set, we have (fJA)"'(V)=Anf (V) is g-o-closed.
Therefore f|A is contra g-o-preirresolute. O

Theorem 4.20 If f:X — Y is contra g-f-preirresolute
and A is a g-f-closed in X, then the restriction f|A:A —
Y is contra g-f-preirresolute.
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Proof 1t is proved by a similar way as that of Theorem
4.19. O

Theorem 4.21 Let (X, gx), (Y,gy) and (Z,gz) be GTS’s.
If f: X — Y is contra g-a-preirresolute and g : Y — Z is
g-preirresolute, then the composition gof :X — Z is
contra g-a-preirresolute.

Proof Let V be any g-preopen subset of Z. Since g
function is g-preirresolute, g~ (V) is g-preopen in Y. Since
s then (g7 (V) =
(g of)*l(V) is g-a-closed in X. As a consequence, g o f is
contra g-o-preirresolute.

contra g-u-preirresolute,

O

Theorem 4.22 Ler (X, gx), (Y,gy) and (Z,gz) be GTS'’s.
If f : X — Y is contra g-f-preirresolute and g : Y — Z is
g-preirresolute, then the composition gof :X — Z is
contra g-[)’—preirresolute.

Proof 1Tt is proved similar to that of Theorem 4.21. [

Conclusion

The concepts of g-o-preirresolute, g-f-preirresolute, contra
g-a-preirresolute, contra g-f-preirresolute have been in-
troduced on generalized topological spaces and some
properties of this continuity have been investigated. These
concepts may be used in other topological spaces and can
be defined in different forms.
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