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Approximation in Morrey-Smirnov classes

D.M. Israfilov∗, N.P. Tozman

Abstract. The Morrey-Smirnov classes Ep,α(G), 0 < α ≤ 2 and p > 1, of the analytic functions
in the domain G with a rectifiable Jordan boundary are defined. In these classes the inverse
theorem of approximation theory is proved and the constructive characterizations problems of the
generalized Lipschitz classes of functions are discussed.
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1. Introduction and Main result

In this work we study the inverse theorems of approximation theory and the con-
structive characterization problems in the Morrey-Smirnov classes, defined on the finite
domain G with a sufficiently smooth Jordan boundary Γ. The Morrey spaces, introduced
by Morrey in 1938, have been studied intensively by various authors and together with
weighted Lebesgue spaces Lp

ω play an important role in the theory of partial equations,
especially in the study of local behavior of the solutions of elliptic differential equations
(see, for example [24], [33]). They also provide a large class of examples of mild solutions
to the Navier-Stokes system [22]. In the context of fluid dynamics, Morrey spaces have
been used to model flow when vorticity is a singular measure supported on certain sets in
R
n [11]. Nowadays there are sufficiently wide investigations relating to the fundamental

problems in these spaces, in view of the differential equations, potential theory, maximal
and singular operator theory and others (see, for example [8] and the references, mentioned
above).

Recently by us in [17] have been investigated the approximation problems in the
Morrey-Smirnov classes of analytic functions and proved in particular one direct theo-
rem of approximation theory by polynomials in the finite domain G with a sufficiently
smooth Jordan boundary Γ, namely when the function θ(s), the angle between the tan-
gent and the positive real axis expressed as a function of arclength s, has the usual uniform
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modulus of continuity Ω(θ, s) on [0, |Γ|], where |Γ| is the linear Lebesgue measure of Γ,
satisfying the condition

δ
∫

0

Ω(θ, s)

s
ds <∞, δ > 0. (1)

In the current paper we prove the appropriate inverse theorem and obtain the construc-
tive characterization of the generalized Lipschitz classes of functions defined below. To
the best of the author’s knowledge in the literature there are no results relating to the
approximation problems in the Morrey-Smirnov classes, defined on the sets of the real line
or complex plane.

Note that the order of approximation by trigonometric polynomials and the construc-
tive description problems of some well-known classes of functions in the weighted and
nonweighted Lebesgue spaces, defined on the interval I0 := (0, 2π) , have been studied
by several authors. The sufficiently wide presentation of the corresponding results can
be found in the works [1], [7] and [25]. Afterwards, these results were extended to the
complex domains and the analogous theory was also developed on the spaces, defined on
the domains with the different geometric properties ( see for example [2], [3], [4], [6], [9],
[12], [13], [14], [15], [16], [18], [19], [23], [31] ).

Let Γ be a rectifiable Jordan curve in the complex plane C. TheMorrey spaces Lp,α(Γ),
for a given 0 ≤ α ≤ 2 and p ≥ 1, we define as the set of functions f ∈ Lp

loc(Γ) such that

‖f‖Lp,α(Γ) :=







sup
B

1

|B ∩ Γ|1−
α
2

∫

B∩Γ

|f(z)|p |dz|







1/p

<∞,

where the supremum is taken over all disks B centered on Γ.
In case of Γ = T := {w : |w| = 1} the Morrey spaces Lp,α(T) for a given 0 ≤ α ≤ 2 and

p ≥ 1, can be defined also as the set of functions f ∈ Lp
loc(T) ≡ Lp

loc(0, 2π), for which

‖f‖Lp,α(T) = ‖f‖Lp,α(0,2π) :=







sup
I

1

|I|1−
α
2

∫

I

∣

∣

∣
f(eiθ)

∣

∣

∣

p
dθ







1/p

<∞,

where the supremum is taken over all intervals I ⊂ (0, 2π).
Under this definition Lp,α(Γ) becomes a Banach space; for α = 2 coincides with Lp(Γ)

and for α = 0 with L∞(Γ). Moreover, Lp,α1(Γ) ⊂ Lp,α2(Γ) for 0 ≤ α1 ≤ α2 ≤ 2. If
f ∈ Lp,α(Γ), then f ∈ Lp(Γ) and hence f ∈ L1(Γ).

Denoting G := int Γ and G− := ext Γ, we define the Morrey-Smirnov classes Ep,α(G),
0 ≤ α ≤ 2 and p ≥ 1, of analytic functions in G as

Ep,α(G) :=
{

f ∈ E1(G) : f ∈ Lp,α(Γ)
}

.

Equipped with the norm

‖f‖Ep,α(G) := ‖f‖Lp,α(Γ) ,
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the class Ep,α(G), 0 ≤ α ≤ 2 and p ≥ 1, becomes a Banach space; for α = 2 coincides with
the classical Smirnov class Ep(G), and for α = 0 with E∞(G). It can be easily to verify
that, Ep,α1(G) ⊂ Ep,α2(G) for 0 ≤ α1 ≤ α2 ≤ 2.

In case of G = D := {z : |z| < 1}, we obtain the space Hp,α(D) := Ep,α(D), so called
Morrey-Hardy space on the unit disk D.

Let ϕ be the conformal mapping of G− onto D− := ext T with normalization

ϕ(∞) = ∞, lim
z→∞

ϕ(z)

z
> 0

and let ψ be the inverse mapping of ϕ. Since Γ is a rectifiable Jordan curve, the derivatives
ϕ′ and ψ′ exist almost everywhere on Γ and on T, respectively and the boundary functions
are integrable on the appropriate sets.

We shall use c, c1, c2, ... to denote constants (in general, different in different relations)
depending only on numbers that are not important for the questions of interest and denote
N := {0, 1, 2, ...}, N+ := {1, 2, ...} .

We define the modulus of smoothness in the Morrey spaces Lp,α(T) as following.

Definition 1. Let g ∈Lp,α(T), 0 ≤ α ≤ 2 and p ≥ 1. We define the r the modulus of
smoothness ωr

p,α(g, ·) : (0,+∞) −→ [0,+∞) of order r ∈ N
+ for g as

ωr
p,α(g, t) := sup

|h|≤t
‖∆r

h(g, ·)‖Lp,α(T) ,

where ∆r
h(g, ·) =

r
∑

k=0

(r
k

)

(−1)r−kg(·eikh).

It is clear that lim
t−→0

ωr
p,α(g, t) = 0 for every g ∈ Lp,α(T), 0 ≤ α ≤ 2 and p ≥ 1, and by

Minkowski’s inequality

ωr
p,α(g1 + g2, ·) ≤ ωr

p,α(g1, ·) + ωr
p,α(g2, ·)

for every g1, g2 ∈ Lp,α(T).
Clearly, ωr

p,α(f, ·) is an increasing function and has the properties:

a) ωr
p,α(g, nt) ≤ nrωr

p,α(g, t) , n ∈ N

b) ωr
p,α(g, λt) ≤ (λ+ 1)rωr

p,α(g, t) , λ > 0

c) ωr
p,α(g, t) ≤ [(n+ 1)t+ 1]r ωr

p,α(g,
1

n+1), n ∈ N

which are proved by standard method.
For f ∈ Ep,α(G), 0 ≤ α ≤ 2 and p ≥ 1, we denote by

En(f)Ep,α(G) := inf
{

‖f − pn‖Lp,α(Γ) : pn is an algebraic polynomial of degree ≤ n
}

the minimal error of approximation of f by algebraic polynomials of degree at most n.
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Since Γ is smooth and satisfies the condition (1), by [32] (see also, [29], pp.140-141)

0 < c1 ≤
∣

∣ψ′(w)
∣

∣ ≤ c2 <∞, (2)

almost everywhere on T and hence, for any disk B ⊂ C , with sufficiently small diameter,
there exists a disk B0 ⊂ C such that

|B ∩ Γ| ≤ c2 |B0 ∩ T| ≤ c3 |B ∩ Γ| . (3)

Indeed, let B be a disk with B ∩ Γ 6= ∅ and let γz := B ∩ Γ, γw := ϕ(γz). For this disk B
with a sufficiently small diameter, the set γz consists only of one arc lying on Γ. Then γw
also consists only of one arc and lies on T. Denoting by B0 the disk containing γw and
having minimal radius, we have

∫

γw

|dw| = |B0 ∩ T| and hence

|B ∩ Γ| =

∫

γz

|dz| =

∫

γw

∣

∣

∣
ψ

′
(w)
∣

∣

∣
|dw| ≤ c2

∫

γw

|dw| = c2 |B0 ∩ T| =

= c2

∫

γz

∣

∣

∣
ϕ

′
(z)
∣

∣

∣
|dz| ≤

c2
c1

∫

γz

|dz| = c3 |B ∩ Γ| .

The relation (3) implies that f0 := f ◦ ψ ∈ Lp,α(T), as soon as f ∈ Lp,α(Γ).
Moreover, if f ∈ Ep,α(G), then by Corollary 1 from [17] the function

f+0 (w) :=
1

2πi

∫

T

f0 (τ) dτ

τ − w
, w ∈ D, (4)

and

f−0 (w) :=
1

2πi

∫

T

f0 (τ) dτ

τ − w
, w ∈ D−, (5)

belong to Hp,α(D) and Hp,α(D−), respectively. Defining the rth modulus of smoothness

of f ∈ Ep,α(G) by
Ωr
Γ,p,α(f, δ) := ωr

p,α(f
+
0 , δ), δ > 0,

and taking the proof of Theorem 1 from [17] into account, we deduce the following direct
theorem of approximation theory in Ep,α(G), 0 < α ≤ 2 and p > 1.

Theorem A Let G ⊂ C be a finite simply connected domain with a boundary Γ,
satisfying the condition (1) and f ∈ Ep,α(G), 0 < α ≤ 2 and 1 < p <∞. Then for a given
r ∈ N

+

En(f)Ep,α(G) ≤ c Ωr
Γ,p,α(f, 1/ (n+ 1)), n ∈ N,

with a constant c > 0 independent of n.

Our main result in this work is the following inverse theorem.
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Theorem 1. Let G ⊂ C be a finite simply connected domain with a boundary Γ, satisfying
the condition (1). If f ∈ Ep,α(G), 0 < α ≤ 2 and 1 < p <∞, then for a given r ∈ N

+

Ωr
Γ,p,α(f, 1/n) ≤

c

nr

n
∑

k=1

kr−1Ek(f)Ep,α(G), n ∈ N
+,

with a constant c > 0 independent of n.

This result in case of α = 2, in the Lebesgue spaces Lp (T) was proved in [30] (for
detailed information see also [1], pp. 331-335). The similar results under the condition
(1) in the nonweighted and weighted Smirnov classes Ep(G) and Ep(G,ω) were obtained
in [18] and [16], respectively.

From theorem 1 after simply computations, we deduce the following result.

Corollary 1. If

En(f)Ep,α(G) = O
(

n−β
)

, β > 0, n ∈ N
+,

for 0 < α ≤ 2 and 1 < p <∞, then f ∈ Ep,α(G) and

Ωr
Γ,p,α(f, δ) =







O
(

δβ
)

, r > β,
O
(

δβ log (1/δ)
)

, r = β,
O (δr) , r < β,

for a given r ∈ N
+ and δ > 0.

Setting here r := [β] + 1 for a given β > 0 and defining the generalized Lipschitz class
Lipα,p (β) , 0 ≤ α ≤ 2 and p > 1, as

Lipα,p (β) :=
{

f ∈ Ep,α(G) : Ωr
Γ,p,α(f, δ) = O

(

δβ
)

, δ > 0
}

,

we obtain the following.

Corollary 2. If

En(f)Ep,α(G) = O
(

n−β
)

, β > 0, n ∈ N,

for 0 < α ≤ 2 and 1 < p <∞, then f ∈ Lipα,p (β) .

Combining this corollary with Theorem A, we obtain the constructive characterization
of the classes Lipα,p (β) .

Theorem 2. Let G ⊂ C be a finite simply connected domain with a boundary Γ, satisfying
the condition (1). Let also 0 < α ≤ 2, β > 0 and 1 < p <∞.The following statements are
equivalent:

(1) f ∈ Lipα,p (β) ,
(2) En(f)Ep,α(G) = O

(

n−β
)

, ∀n ∈ N
+.

In case of α = 2 and β ∈ (0, 1) the last result coincides with Alper’s result obtained in
[2].

The similar results in the Smirnov classes of analytic functions were proved in [16].
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2. Auxiliary results

Let I be any subinterval of I0 = (0, 2π) with the characteristic function χ
I
. As usual

we define the maximal function of χ
I
, setting

Mχ
I
(x) := sup

J�x

1

|J |

∫

J

χ
I
(y)dy,

where sup is taken over all intervals J � x. Then the following useful relation of equivalence
holds:

Mχ
I
(x) ≈ χ

I
(x) +

∞
∑

k=0

2−kχ(2k+1I\2kI)∩I0(x), x ∈ I0. (6)

Indeed, if x ∈ I, then

Mχ
I
(x) := sup

J�x

1

|J |

∫

J

χ
I
(y)dy =

1

|I|

∫

I

χ
I
(y)dy = 1,

and also

χ
I
(x) +

∞
∑

k=0

2−kχ(2k+1I\2kI)∩I0(x) = 1.

If x ∈ I0\ I, then there is a number k0 ∈ N such that x ∈
(

2k0+1I\2k0I
)

∩ I0 . Let x poses
after the interval 2k0I and b is the endpoint of I (when x poses before the interval 2k0I
the assertion proves by similar way), then denoting I+ := {y : b ≤ y < x} and J+ := I∪I+
we have I+ ∩ I = ∅, |I+| = dist(x, I) and |J+| = |I|+ dist(x, I). Hence,

Mχ
I
(x) = sup

J�x

1

|J |

∫

J

χ
I
(y)dy = sup

J�x

|J ∩ I|

|J |
=

|J+ ∩ I|

|J+|
=

=
| I|

|J+|
=

| I|

|I|+ dist(x, I)
≈

| I|

|I|+ 2k0 |I|
≈

1

2k0
.

Also for the right side of ( 6) we have

χ
I
(x) +

∞
∑

k=0

2−kχ(2k+1I\2kI)∩I0(x) =
1

2k0
.

Thus the relation ( 6) is true.
We begin with the Bernstein inequality concerning trigonometric polynomials Tn of

degree ≤ n in the Morrey spaces Lp,α(0, 2π), 0 < α ≤ 2 and 1 < p <∞.

Lemma 1. Let Lp,α(0, 2π) be a Morrey spaces with 0 < α ≤ 2 and 1 < p < ∞. Then for
every trigonometric polynomial Tn of degree n and k ∈ N+ the inequality

∥

∥

∥T (k)
n

∥

∥

∥

Lp,α(0,2π)
≤ cnk ‖Tn‖Lp,α(0,2π) , n ∈ N,

holds with a constant c independent of n.
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Proof. We prove the inequality in case of k = 1. The general case can be proved by
iteration.

Let I be any subinterval of I0 = (0, 2π) with the characteristic function χ
I
. As was

noted in the proof of Theorem 3 from [5] (referring to [27] ), the maximal function Mχ
I

satisfies the A1 condition of Muckenhoupt, i.e. M (Mχ
I
) ≤ cMχ

I
. Then it satisfies also

the Ap, p > 1, Muckenhoupt condition on I0 and using the Bernstein inequality for the
trigonometric polynomials in the weighted Lebesgue spaces Lp (I0, ω) with ω ∈ Ap (0, 2π) ,
proved in [21], we have
∫

I

∣

∣

∣T
′

n (t)
∣

∣

∣

p

dt =

∫

I0

∣

∣

∣T
′

n (t)
∣

∣

∣

p
χ

I
(t)dt ≤

∫

I0

∣

∣

∣T
′

n (t)
∣

∣

∣

p
Mχ

I
(t)dt ≤ c4n

p

∫

I0

|Tn (t)|
pMχ

I
(t)dt,

in case of ω :=Mχ
I
. Applying here the equivalence ( 6) we get

∥

∥

∥T
′

n

∥

∥

∥

p

Lp,α(I0)
= sup

I

1

|I|1−
α
2

∫

I

∣

∣

∣T
′

n (t)
∣

∣

∣

p
dt =

≤ c5 sup
I

np

|I|1−
α
2

∫

I0

|Tn (t)|
p

(

χ
I
(t) +

∞
∑

k=0

2−kχ(2k+1I \ 2kI)∩I0(t)

)

dt =

= c5sup
I

np

|I|1−
α
2

∫

I

|Tn (t)|
p |dt|+ c5sup

I

np

|I|1−
α
2

∞
∑

k=0

2−2k

∫

(2k+1I \ 2kI)∩I0

|Tn (t)|
p dt ≤

≤ c5n
p






‖Tn‖

p
Lp,α(I0)

+

∞
∑

k=0

2−ksup
I

1

|I|1−
α
2

∫

2k+1I ∩I0

|Tn (t)|
p dt






≤

≤ c5n
p ‖Tn‖

p
Lp,α(0,2π) + c5

∞
∑

k=0

2−k+(k+1)(1−α
2
)sup

I

np

|2k+1I ∩ I0|
1−α

2

∫

2k+1I ∩I0

|Tn (t)|
p dt ≤

≤ c5n
p ‖Tn‖

p
Lp,α(I0)

+ c6

∞
∑

k=0

2−k+(k+1)(1−α
2
)sup

I

np

|I|1−
α
2

∫

I

|Tn (t)|
p dt ≤

≤ c7n
p ‖Tn‖

p
Lp,α(I0)

+ c8n
p ‖Tn‖

p
Lp,α(I0)

≤ cnp ‖Tn‖
p
Lp,α(I0)

,

because
∞
∑

k=0

2−k+(k+1)(1−α
2
) <∞. J

The following inverse theorem is the model version of the main result and its proof,
taking Lemma 1 and the above emphasized properties of modulus of smoothness ωr

p,α(f, ·)
into account, realizes by repeating step by step the proof of the appropriate result in the
spaces Lp (0, 2π), due to A. F. Timan and M. F. Timan [1, pp. 331-335] (see also, [7], p.
208).
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Theorem 3. Let Lp,α(T) be a Morrey spaces with 0 < α ≤ 2 and 1 < p <∞. Then for a
given f ∈ Lp,α(T) and r ∈ N

+ the estimate

ωr
p,α(f, 1/n) ≤ c n−r

n
∑

k=1

kr−1Ek(f)Lp,α(T), n = 1, 2, ...,

holds with a constant c > 0 independent of n.

Definition 2. A Jordan curve Γ is said to be a regular (or Carleson ) curve, if

mes{t ∈ Γ : |t− z| < r} ≤ cr,

for all z ∈ Γ and r > 0, where c> 0 does not depend on z and r.

In particular, the curves satisfying the condition (1) are regular.

The below mentioned result, on the boundedness of the singular integral

S(f)(z) := lim
ε→0

1

2πi

∫

Γ\D(z,ε)

f(ζ)

ζ − z
dς, z ∈ Γ, D(z, ε) := {ζ : |ζ − z| < ε} ,

was proved in [17] (see also, [20] and [28]).

Lemma 2. Let Γ be a Jordan regular curve and let Lp,α(Γ) be a Morrey space with
0 < α ≤ 2 and 1 < p <∞. Then for every f ∈ Lp,α(Γ) the estimate

‖S(f)‖Lp,α(Γ) ≤ c ‖f‖Lp,α(Γ) ,

holds with a constant c = c(p, α,Γ) > 0 independent of f.

Now we construct a linear operator fromHp,α (D) to Ep,α (G) , which play an important
role for the investigations of the approximation problems in the classes Ep,α (G) , starting
from the solutions of the similar problems in Hp,α (D). For this purpose we remind some
necessary knowledges on the Faber polynomials for G, which can be found in [29].

The Faber polynomials Fk, k ∈ N, for G are defined through the expansion

ψ′(w)

ψ(w) − z
=

∞
∑

k=0

Fk(z)

wk+1
, z ∈ G and w ∈ D−, (6)

and for every k ∈ N the inequalities

Fk(z) =
1

2πi

∫

T

wkψ′(w)

ψ(w) − z
dw, z ∈ G, Fk(z) = ϕk(z) +

1

2πi

∫

Γ

ϕk(ζ)

ζ − z
dς, z ∈ G−,

hold.
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If f ∈ Ep,α(G), then by definition f ∈ Ep(G) and hence

f(z) =
1

2πi

∫

Γ

f(ζ)

ζ − z
dς =

1

2πi

∫

T

f(ψ(w))ψ′(w)

ψ(w) − z
dw,

for every z ∈ G.

This representation together with (6) imply that we can associate with f the formal
series

f(z) ∼

∞
∑

k=0

akFk(z), z ∈ G,

where

ak = ak(f) :=
1

2πi

∫

T

f0(w)

wk+1
dw, k ∈ N.

This formal series is called the Faber series of f , and the coefficients ak, k ∈ N, are

said to be the Faber coefficients of f . By Sn (f, z) :=
n
∑

k=0

akFk(z) we denote the nth partial

sum of f ∈ Ep,α(G).

Let

P := {the set of all polynomials (with no restrictions on the degree)}

and

P(D) := {traces of all members of Pon D}.

We define the operator T (P ) on P(D) as:

T (P )(z) :=
1

2πi

∫

T

P (w)ψ′(w)

ψ(w) − z
dw =

1

2πi

∫

Γ

P (ϕ (ς))

ς − z
dς, z ∈ G. (7)

Then

T

(

n
∑

k=0

bkw
k

)

=
1

2πi

n
∑

k=0

bk

∫

T

wkψ′(w)

ψ(w) − z
dw =

n
∑

k=0

bkFk(z).

If z
′
∈ G, then taking limit z

′
→ z ∈ Γ over all non-tangential paths inside Γ in (7),

we get

T (P )(z) = SΓ (P ◦ ϕ) (z) +
1

2
(P ◦ ϕ) (z),

a. e. on Γ. Hence applying Lemma 2 and relation (2)we conclude that

‖T (P )‖Lp,α(Γ) ≤ c10 ‖(P ◦ ϕ)‖Lp,α(Γ) ≤ c ‖P‖Lp,α(T) .

Therefore, we obtain the following result.
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Lemma 3. If Γ satisfies the condition (1), then the linear operator T : P(D) → Ep,α(G),
with 0 < α ≤ 2 and 1 < p <∞, is bounded.

Extending the operator T : P (D) → Ep,α(G),0 ≤ α ≤ 2 and 1 < p < ∞, from P(D)
to the space Hp,α (D) as a linear and bounded operator, for the extension T : Hp,α (D) →
Ep,α(G), 0 ≤ α ≤ 2 and1 < p <∞, we have the representation

T (g)(z) :=
1

2πi

∫

T

g(w)ψ′(w)

ψ(w) − z
dw, z ∈ G, g ∈ Hp,α (D) .

Theorem 4. If Γ satisfies the condition (1 ) , then the linear operator

T : Hp,α (D) → Ep,α(G), 0 ≤ α ≤ 2 and 1 < p <∞,

is one-to one and onto.

Proof. Let g ∈ Hp,α (D) with the Taylor expansion

g(w) =

∞
∑

k=0

αkw
k, w ∈ D.

Setting gr(w) := g(rw), 0 < r < 1, we have

1

|B ∩ T|1−
α
2

∫

B∩T

|gr(w) − g(w)|p |dw| =
1

|B ∩ T|1−
α
2

∫

T

|gr(w)− g(w)|p χB∩T(w) |dw| ≤

≤
1

|B ∩ T|1−
α
2

∫

T

|gr(w)− g(w)|pMχB∩T(w) |dw| . (8)

for every disk B ⊂ C. As was emphasized above, Mχ
B∩T

∈ A1. Moreover, the function
g ∈ Hp,α (D) is the Poisson integral of its boundary function g ∈ Lp,α(T). Taking these
arguments and [26, Theorem 10] into account, we have

lim
r→1

∫

T

|gr(w)− g(w)|pMχB∩T(w) |dw| = 0.

Hence from (8) we get

lim
r→1

‖gr − g‖Lp,α(T) = 0,

which by the boundedness of the operator T : Hp,α (D) → Ep,α(G), 0 < α ≤ 2 and 1 <
p <∞, implies that

lim
r→1

‖T (gr)− T (g)‖Lp,α(Γ) = 0. (9)
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The series
∞
∑

k=0

αkr
kwk converges uniformly on T, because the series

∞
∑

k=0

αkw
k is uni-

formly convergent on |w| = r < 1. Hence,

Tp(gr)(z) =
1

2πi

∫

T

gr(w)ψ
′(w)

ψ(w) − z
dw =

∞
∑

k=0

αkr
k 1

2πi

∫

T

wkψ′(w)

ψ(w) − z
dw =

∞
∑

k=0

αkr
kFk(z),

for z ∈ G. Taking the limit as z
′
→ z ∈ Γ along all non-tangential paths inside Γ, we have

T (gr)(z) =
∞
∑

k=0

αkr
kFk(z), z ∈ Γ.

From this equality by Lemma 3 of [10, p. 43], for the Faber coefficients ak (Tp(gr)) of
Tp(gr), we have

ak (T (gr)) =
1

2πi

∫

T

T (gr) ◦ ψ(w)

wk+1
dw =

∞
∑

k=0

αkr
k 1

2πi

∫

T

Fk ◦ ψ(w)

wk+1
dw = αkr

k, k ∈ N,

and hence

ak (T (gr)) → αk, as r → 1−. (10)

Now by (2) and Hölder’s inequality,

|ak (T (gr))− ak (T (g))| =

∣

∣

∣

∣

∣

∣

1

2πi

∫

T

[T (gr)− T (g)] ◦ ψ(w)

wk+1
dw

∣

∣

∣

∣

∣

∣

≤

≤
1

2π

∫

T

|[T (gr)− T (g)] ◦ ψ(w)| |dw| ,

1

2π

∫

Γ

|[T (gr)− T (g)] (z)|
∣

∣ϕ′(z)
∣

∣ |dz| ≤

≤
c

2π

∫

Γ

|[T (gr)− T (g)] (z)| |dz| ≤ c9 ‖T (gr)− T (g)‖Lp(Γ) ≤ c10 ‖T (gr)− T (g)‖Lp,α(Γ) .

From here, by virtue of (9)

ak (T (gr)) → ak (T (g)) as r → 1−.

This and the relation (10) yield that

ak (T (g)) = αk, k ∈ N.
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Hence, if T (g) = 0, then αk = ak (T (g)) = 0 for k = 0, 1, 2, ..., and thus g = 0. This
proves that the operator

Tp : Hp,α(D) → Ep,α(G),

is one-to-one.
Now let f ∈ Ep,α(G). Consider the function f0 = f ◦ ψ ∈ Lp,α(T). The non-tangential

boundary values of the functions f+0 and f−0 , defined respectively by the representations
(4) and (5), have the representations

f+0 (w) = S(f0)(w) + f0(w)/2,

f−0 (w) = S(f0)(w)− f0(w)/2,

almost everywhere on T and hence

f0(w) = f+0 (w)− f−0 (w),

almost everywhere on T. Then for the Faber coefficients ak(f), k ∈ N, we get

ak(f) =
1

2πi

∫

T

f0(w)

wk+1
dw =

1

2πi

∫

T

f+0 (w)

wk+1
dw−

1

2πi

∫

T

f−0 (w)

wk+1
dw =

1

2πi

∫

T

f+0 (w)

wk+1
dw = ak(f

+
0 ),

because f−0 ∈ H1 (D) and f−0 (∞) = 0. This means that the Faber coefficients ak(f),
k ∈ N, of f also becomes the Taylor coefficients ak(f

+
0 ), k ∈ N, of f+0 at the origin, namely

f+0 (w) =

∞
∑

k=0

akw
k, w ∈ D.

On the other hand, from the first part of the proof we have

T (f+0 ) ∼

∞
∑

k=0

ak(f)Fk.

Since there are no two different functions in Ep(G) that have the same Faber coefficients
[3], we conclude that T (f+0 ) = f. Therefore, the operator T is onto. J

3. Proof of Main result

Proof. (of Theorem 1.) Let f ∈ Ep,α(G). Then Tp(f
+
0 ) = f , by the proof of Theorem

4.
Since Tp : H

p,α(D) → Ep,α(G) is linear, bounded, one-to-one and onto, the operator

T−1
p : Ep,α(G) → Hp,α(D),

is also bounded.
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Let P ∗
k ∈ Pk, k ∈ N, be the polynomials of best approximation to f in Ep,α(G), i.e.,

Ek(f)Lp,α(G) = ‖f − P ∗
k ‖Lp,α(Γ)

.

It is clear that T−1
p (P ∗

k ) ∈ Pk(D) and therefore,

Ek(f
+
0 )Hp,α(D) ≤

∥

∥f+0 − T−1
p (P ∗

k )
∥

∥

Lp,α(T)
=
∥

∥T−1
p (f)− T−1

p (P ∗
k )
∥

∥

Lp,α(T)
≤

≤
∥

∥T−1
p

∥

∥ ‖f − P ∗
k ‖Lp,α(Γ)

=
∥

∥T−1
p

∥

∥Ek(f)Ep,α(G).

Hence, applying Theorem 3 in case of Hp,α(D) and the last relation, we have

Ωr
Γ,p,α(f, 1/n) = ωr

p,α(f
+
0 , 1/n) ≤ c11n

−r
n
∑

k=1

kr−1Ek(f
+
0 )Hp,α(D) ≤

≤ c11n
−r
∥

∥T−1
p

∥

∥

n
∑

k=1

kr−1Ek(f)Ep,α(G) ≤ c n−r
n
∑

k=1

kr−1Ek(f)Ep,α(G),

which proves Theorem 1. J
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