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Abstract

We study the Higgs sector of the U(1)′-extended MSSM with CP violation. This is an extension

of the MSSM Higgs sector by one singlet field, introduced to generate the µ term dynamically. We

are particularly interested in non-standard decays of Higgs particles, especially of the lightest one,

in the presence of CP violating phases for µeff and the soft parameters. We present analytical

expressions for neutral and charged Higgs bosons masses at tree and one-loop levels, including

contributions from top and bottom scalar quark sectors. We then study the production and decay

channels of the neutral Higgs for a set of benchmark points consistent with low energy data and

relic density constraints. Numerical simulations show that a Higgs boson lighter than 2mW can

decay in a quite distinctive manner, including invisible modes into two neutralinos (h → χ̃0χ̃0) up

to ∼ 50% of the time, when kinematically allowed. The branching ratio into h → b̄b, the dominant

decay in the SM, is reduced in some U(1)′ models and enhanced in others, while the branching

ratios for the decays h → τ+τ−, h → WW ∗ and h → ZZ∗ → 4ℓ are always reduced with respect

to their SM expectations. This possibility has important implications for testing the U(1)′ model

both at the LHC and later at the ILC.

PACS numbers: 12.60.Cn,12.60.Jv,14.80.Ly
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I. INTRODUCTION AND MOTIVATION

Confirmation of the Higgs mechanism of the Standard Model (SM) of particle physics

demands discovery of the elusive Higgs boson, likely seen at ATLAS [1] and CMS [2] at a

mass around 126 GeV. The Minimal Supersymmetric extension of the SM (MSSM), which is

arguably the best motivated extension of the SM, offers stabilization of the Higgs mass, and

moreover agrees well with the SM predictions in certain portions of its restricted parameter

space. For instance, for the upper limit of mh ∼135 GeV of the MSSM h → b̄b is the

dominant decay mechanism (∼ 60%) in the SM and in the MSSM. On the other hand,

in gauge and Higgs extended supersymmetric models, the properties of the Higgs bosons

can be substantially different from that of the standard supersymmetric model predictions.

For instance, the addition of one singlet field to the MSSM Higgs sector provides new tree-

level contributions to the F - and D-terms, which stabilize the Higgs mass naturally at a

larger value [3]. While many models predict a light Higgs boson around the weak scale (say

∼100 GeV), it will take some time to differentiate whether the boson discovered at the LHC

belongs to the SM gauge symmetry, its minimal supersymmetric version (MSSM), or even

to another extension such as the gauge extended versions of the MSSM.

Extensions of the gauge symmetry by an extra U(1) factor (supersymmetric or not) are

arguably the simplest extensions of the minimal model. The best justification for these

extended models arises from assuming grand unified theories of strong and electromagnetic

interactions (GUTs). In GUT symmetries, it seems difficult to break most scenarios directly

to SU(2)L × U(1)Y , as most models such as SU(5), SO(10), or E6 involve an additional

U(1) group in the breaking. In supersymmetric U(1)′ models [4] (referred to as U(1)′ models

from now on), the number of the neutral Higgs bosons is increased by an additional singlet

field (S) over that of the MSSM, and the vacuum expectation value (VEV) of the singlet 〈S〉
is responsible for the generation of the µ term, which allows Higgs fields to couple to each

other [5, 6]; while number of charged Higgs bosons in the U(1)′ extended models remains

the same as in the MSSM. The interest in the Higgs sector of the U(1)′ models also comes

from the fact that such models arise naturally from string inspired models [5, 7–9], or as the

dynamical solution to the µ problem in gauge-mediated supersymmetry breaking (GMSB)

[10]. While in the MSSM and in the U(1)′ models lightest neutralino is the best candidate

for a LSP, for the latter the LSP is less constrained.
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In these models, the lightest Higgs boson could potentially behave differently from the

SM or the MSSM Higgs boson due to its singlet nature. While a Higgs boson of mass mh ∼
126 GeV can be predicted by the SM, or by the MSSM, or by numerous other models, the

coupling of the Higgs to the known fermions or bosons is not the same in all these models.

This fact can be extrapolated not only from the number of the Higgs bosons but also from

their production and decay mechanisms.

Of all the Higgs bosons in a model, the properties of the lightest neutral state are the most

interesting, also given its likely discovery already at the LHC. An interesting possibility is

that its decay could be partially into invisible modes (a possibility hinted at by the reduced

branching ratios into fermions at the LHC), or that there is another Higgs boson lighter

than the one at 126 GeV, which decays completely or almost so, invisibly [11, 12]. This

scenario is motivated by global fits to the data at the LHC which indicate that a Higgs

boson branching ratio of 64% is still unaccounted for [13].

In SM the Higgs can decay invisibly only into neutrinos, and this branching ratio is

≤ 0.1% [14]. A light Higgs boson with substantial branching ratio into invisible channels

can occur in a variety of models including scenarios with light neutralinos, spontaneously

broken lepton number, radiatively generated neutrino masses, additional singlet scalar(s)

and/or right handed neutrinos in the extra dimensions of TeV scale gravity. Among these

possibilities, invisible decay of the lightest Higgs into light neutralinos is interesting since

the light neutralinos are well motivated candidates for the Lightest Supersymmetric Particle

(LSP), providing viable relic density explanations∗. Decays into light neutralinos are possible

in models with non-universal couplings, where LEP limits can be circumvented [17], and in

models with a light dark matter candidate. For instance, a study [18] indicates that this

is a possibility in E6, where the lightest Higgs boson of the Exceptional Supersymmetric

Standard Model E6SSM can decay into the lightest neutralino pairs more than 95% of the

time [19].

Additionally, the Higgs sector in extended models could provide potential sources of CP

violation beyond the phase of the CKM matrix, also important for the observed baryon

asymmetry of the universe. These phases can affect the masses and couplings of the Higgs

bosons to the gauge and matter fields of the model, as was shown in studies of Higgs sectors of

the MSSM [20] and next-to minimal supersymmetric models (NMSSM) [21]. The phases can

∗ Note that in U(1)′ models the LSP can be the singlino [15, 16].
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also affect production and decay rates patterns, as we will show in this study. In this work,

we analyze the mass spectra of all the Higgs bosons, and the production and decay rates

(visible and invisible) for the lightest Higgs in the U(1)′ extended form of the MSSM with

CP-violating phases. The masses of Higgs bosons in the U(1)′ with CP violating phases

model have received attention previously [22], but we include them here, for consistency

with the determination of their decay properties. Thus, we re-visit the Higgs sector of U(1)′

models and calculate the masses, and in doing this, we improve on the previous calculation

by including contributions from both (s)top and (s)bottom sectors at one-loop level, and

add the constraint that the lightest neutral state should have mass ∼ 125 GeV.

Motivated by the above considerations, we study anomaly-free U(1)′ models to probe

their peculiar Higgs sector consistent with the known (astrophysical and collider) bounds,

which are included in our benchmark points. We add the scalar quarks and neutralino con-

tributions, and calculate a complete spectrum for the latter, and insure agreement with the

relic density, assuming that the lightest neutralino is the LPS . We then study the produc-

tion and decay modes of the lightest neutral Higgs boson, with the purpose of unraveling

the existence and consequences of invisibly decaying Higgs bosons within the U(1)′ model.

The outline of our study is as follows. In the following section (Section II) we introduce

our effective U(1)′ model, with particular emphasis on the Higgs sector. We present tree-

level ( IIA) and one loop mass evaluations (IIB), and then an analytical calculation of the

charged and neutral Higgs masses (IIC). We then introduce the neutralino spectrum (IID) of

the U(1)′ model, which contains two additional neutralinos from the MSSM. We include the

constraints on the particle spectrum coming from low-energy measurements of CP violation

in Section III, in particular from electric dipole moments (IIIA) and εK (III B). Following

the exposition of the model and its constraints, we present our numerical investigations

in Section IV, in particular for the lightest neutral Higgs boson production and decay in

IVA, comment on the second lightest neutral state in IVB. We summarize our findings and

conclude in Section V. The full form of analytical solutions for the masses can be found in

the Appendices.
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II. THE U(1)′ MODEL WITH CP VIOLATION

We review here briefly the U(1)′ model, with particular emphasis to the Higgs and the

neutralino sectors, as these are relevant to our study. The superpotential for the effective

U(1)′ model is

W = YSŜĤu · Ĥd + YtÛ
cQ̂ · Ĥu + YbD̂

cQ̂ · Ĥd, (1)

where we assumed that all Yukawa couplings except for Yt and Yb are negligible. As can be

seen from (1), by replacing the µ parameter with a singlet scalar (S) and a Yukawa coupling

(YS), we resolved the µ problem of the MSSM [6]; µ is generated dynamically through the

VEV of the S field (see IIA) and is expected to be of order of the weak scale.

In addition to the superpotential, the Lagrangian includes soft supersymmetry breaking

terms containing additional terms with respect to the MSSM, coming from gaugino masses

Ma (a = 1, 1′, 2, 3) and trilinear couplings AS, At and Ab as given below

− Lsoft = (
∑

a

Maλaλa + ASYSSHu ·Hd + AtYtŨ
cQ̃ ·Hu + AbYbD̃

cQ̃ ·Hd + h.c.) (2)

+ m2
u|Hu|2 +m2

d|Hd|2 +m2
s|S|2 +M2

Q̃
|Q̃|2 +M2

Ũ
|Ũ |2 +M2

D̃
|D̃|2 +M2

Ẽ
|Ẽ|2 +M2

L̃
|L̃|2 .

Using Renormalization Group Equations (RGEs) these soft SUSY breaking parameters are

generically non-universal at low energies. However, in our numerical studies, we choose

not to deal with the evolution of the RGEs and instead assign them values which do not

contradict with the current collider bounds. As we are interested in CP violation, we assume

some of the soft breaking terms to be complex, selected as the trilinear terms (At,b,S) and

the VEV of the Higgs field S, as these assignments do not conflict with present low energy

data.

A. The Higgs Sector at Tree-level

The effective U(1)′ model inherits two Higgs doublets Hu, Hd from the MSSM, and has

an additional singlet field S, all of which can be expanded around their VEVs as

〈Hu〉 =
eiθu√
2




√
2H+

u

vu + φu + iϕu


 , 〈Hd〉 =

eiθd√
2


 vd + φd + iϕd√

2H−
d


 ,

〈S〉 = eiθs√
2
(vS + φS + iϕS) , (3)
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in which v2 ≡ v2u + v2d = (246GeV)2. The fields in the superpotential are charged under the

U(1)′ gauge group with charges Q, required by gauge invariance to satisfy:

QHu
+QHd

+QS = 0, QQ3
+QU3

+QHu
= 0, QQ3

+QD3
+QHd

= 0.

The effective µ parameter is generated by the singlet VEV 〈S〉, defined as

µeff ≡ µ eiθs, where µ =
YSvS√

2
, (4)

so that with this convention µ is always real. For the remaining parameters we adopt the

convention that the parameters are real, and explicitly attach CP violating phases where

needed. Explicitly, arg(At) = θt and similarly θb refers to the argument of Ab. In order to

differentiate the phase of AS from that of S we use small and capital letters: arg(S) = θs,

arg(AS) = θS . For the Higgs fields, we assume θu = θd = 0 to avoid spontaneous CP

breaking (SCPV) in the potential, associated with a real CKM matrix [23], which conflicts

with experimental observations. However, to keep our considerations as general as possible,

one can also define a new phase

θΣ = arg (Hu) + arg (Hd) + arg (S) = θu + θd + θs . (5)

A detailed analysis of the Higgs sector with CP violating phases is available in [22] and

references therein, but it is sufficient to mention that we assume θs 6= 0, which in a more

general context could be replaced by θΣ 6= 0. The tree level Higgs potential of the effective

U(1)′ model is a sum of F -terms, D-terms, and soft supersymmetry breaking terms:

Vtree = VD + VF + Vsoft, (6)

where the terms VD, VF and Vsoft are:

VD =
g2

8
(|Hu|2 − |Hd|2)2 +

g22
2
(|Hu|2|Hd|2 − |Hu ·Hd|2) +

g2Y ′

2
(Qu|Hu|2 +Qd|Hd|2 +QS |S|2)2,

VF = |YS|2
[
|Hu ·Hd|2 + |S|2(|Hu|2 + |Hd|2)

]
,

Vsoft = m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +m2

S|S|2 + (ASYSSHu ·Hd + h.c.), (7)

where the coupling constant g2 = g22 + g2Y . For the numerical analysis we take gY = gY ′ (the

U(1)′ coupling constant), which does not conflict with the unification of the gauge couplings.

From the tree-level potential one can derive the minimization equations for the VEVs

vu, vd, vS and the phase θΣ(θs). These relations yield conditions relating the VEVs to the

physical Higgs masses.
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The spectrum of physical Higgs bosons consist of three neutral scalars (h,H,H ′), one CP

odd pseudoscalar (A0) and a pair of charged Higgs bosons H± in the CP conserving case. In

total, the spectrum differs from that of the MSSM by one extra CP-even scalar. Notice that,

the composition, the mass and the couplings of the lightest Higgs boson of U(1)′ models

can exhibit significant differences from the MSSM, and this could be an important source of

distinguishing signatures in the forthcoming experiments. It is important to emphasize that

these models can predict naturally larger values for mh, the lightest neutral Higgs boson

masses, which are more likely to agree with the boson mass seen at the LHC. While we can

safely require mh ≥ 90 GeV for all numerical estimates [24], in principle, it is possible to

obtain larger values such as mh ∼ 140 GeV within some of the E6 based models. In our

evaluations, we shall impose mh ∼ 124−126 GeV, in agreement with the mass of the particle

observed at the LHC.

B. One-loop Corrections to the Higgs Potential

The tree level potential in Eq. (6) is insufficient to make precise predictions for masses

and mixings, and thus we include loop corrections. For this we use the effective potential

approach. Not all of the CP violating parameters are free parameters, and loop corrections

induce certain relationships among them. The one-loop corrected potential has the form

V = Vtree + ∆V , where Vtree is defined in (6), and ∆V is the one-loop Coleman-Weinberg

potential [25]:

∆V =
1

64π2

{
ΣJ(−1)2J+1(2J + 1)M4(Hu, Hd, S)

[
ln

M2(Hu, Hd, S)

Λ2
− 3

2

]}
, (8)

where M represent the mass matrices of all the particles in the theory. While many particles

and their superpartners could be added for the calculation of the loop corrections, we include

here the dominant contributions coming from the top and bottom sectors (f = t, b) for both

the quarks and scalar quarks, so that both contributions from small and large tanβ values

can be investigated safely. Specifically

∆V =
6

64π2

∑

f=b,t

{
∑

k=1,2

(m2
f̃k
)2

[
ln

(
m2
f̃k

Λ2

)
− 3

2

]
− 2(m2

f)
2

[
ln

(
m2
f

Λ2

)
− 3

2

]}
. (9)

In this expression the masses depend explicitly on the Higgs field components: for instance

the bottom mass-squared is given by m2
b = Y 2

b |Hd|2, and the top by m2
t = Y 2

t |Hu|2, and
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the scalar quark masses-squared are obtained by diagonalizing the mass-squared matrix, the

unitary matrix Sf as S†
fM̃

2Sf = diag(m2
f̃1
, m2

f̃2
), with f = t, b.

The vacuum state is obtained by requiring the vanishing of all tadpoles and positivity of

the resulting Higgs boson masses. The vanishing of tadpoles for V along the CP-even direc-

tions φHu,Hd,S and CP-odd directions ϕu,d,S allows the soft masses m2
Hu,Hd,S

to be expressed

in terms of the other parameters of the potential. The tadpole terms are obtained from

Ti =
(
∂V

∂Φi

)

0

, (10)

where 0 means that we evaluate the derivative at the minimum of the potential, V =

Vtree+∆V , and Φi = φu, φd, φS, ϕu, ϕd, ϕS. Since all tadpole terms must vanish, enforcement

of T1,2,3 = 0 is used to obtain mHu,Hd,S, respectively, and T4,5,6 can be used for the phase of

the trilinear coupling (AS), which is θS . In fact at the tree-level the result is θS = 0, but

loop corrections induce this quantity to be non-zero. For instance, at the tree level, using

T1, T2 and T3 (given explicitly in the Appendices), one can express Higgs mass-squared as

m2
Hu

=
ASYS cos(θΣ + θS)vdvS√

2vu
− QHu

Π+ Y 2
S (v

2
d + v2S)

2
+
g2(v2u − v2d)

8
, (11)

m2
Hd

=
ASYS cos(θΣ + θS)vuvS√

2vd
− QHd

Π+ Y 2
S (v

2
u + v2S)

2
+
g2(v2u − v2d)

8
, (12)

m2
S =

ASYS cos(θΣ + θS)vdvu√
2vs

− QSΠ+ Y 2
S (v

2
d + v2u)

2
, (13)

where

Π = g2Y ′(QHd
v2d +QSv

2
S +QHu

v2u). (14)

At tree-level T4, T5 and T6 are zero, but at one-loop level they all induce the same non-zero

result. We collected the full form of the tadpoles T4, T5 and T6 in the Appendices. Using the

tadpoles along the CP odd directions, the phase of the trilinear coupling of S (AS) emerges

as a radiatively induced quantity,

θS → − sin−1

(
3(FbSbAbY

2
b + FtStAtY

2
t )

32π2AS

)
− θΣ, (15)

where we defined St = sin(θt + θΣ) and Sb = sin(θb + θΣ). We define cosine of the same

quantities: Ct = cos(θt + θΣ) and Cb = cos(θb + θΣ). Here Ft and Fb are loop functions:

Ff = −2 + ln

(
m2
f̃1
m2
f̃2

Q4

)
− ln

(
m2
f̃1

m2
f̃2

)
Σf
∆f

, (16)

where f = t, b refers to top and bottoms and we defined Q as the SUSY breaking scale,

∆f = m2
f̃2
−m2

f̃1
and Σf = m2

f̃2
+m2

f̃1
.
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C. The Higgs Mass Calculation

We now turn to the Higgs mass calculation at one-loop in the presence of CP violation

in the stop and sbottom LR mixing. The mass-squared matrix of the Higgs scalars is

M2
ij =

(
∂2

∂Φi∂Φj
V

)

0

. (17)

In the above Φi = (φi, ϕi). Two linearly independent combinations of the pseudoscalar

components ϕu,d,S are the Goldstone bosons GZ and GZ′, which are used to give mass

to the Z and Z ′ gauge bosons, leaving one physical pseudoscalar Higgs state A0, which

mixes with the neutral Higgs mass states in the presence of CP violation. In the basis of

scalars B = {φu, φd, φS, A0}, the neutral Higgs mass-squared matrix M2 takes the following

symmetric form

M2
H0 =




M2
11 M2

12 M2
13 M2

14

M2
12 M2

22 M2
23 M2

24

M2
13 M2

23 M2
33 M2

34

M2
14 M2

24 M2
34 M2

44



. (18)

The mass-squared matrix can be diagonalized by a 4 × 4 orthonormal matrix O. In doing

this we follow the convention OM2
H0O†=diag(m2

H0

1

, m2
H0

2

, m2
H0

3

, m2
H0

4

), where, to avoid dis-

continuities in the eigenvalues, we adopt the ordering: mH0

1
< mH0

2
< mH0

3
< mH0

4
. The

elements of O determine the couplings of Higgs bosons to the MSSM fermions, scalars, and

gauge bosons.

The results for the entries of the neutral Higgs (mass)2 matrix are collected in the Ap-

pendices. As an example, we show here one of the masses for the CP-conserving case. When

CP is conserved all M2
i4 and M2

4i entries should vanish, with the exception of the M2
44 term,

which is actually the pseudoscalar Higgs (mass)2 term. When CP is conserved M2
A0 is

M2
A0 =M2

44 =
µω2AS
vdv2Svu

+
κµω2∆2

b∆
2
t (FbAbY

2
b + FtAtY

2
t )

vdv2Svu
, (19)

where ω2 = v2v2S + v2dv
2
u and κ = 3/(32π2∆2

t∆
2
b).

Calculation of masses of the charged Higgs bosons is very similar to the neutral ones and

we obtain the following mass-squared matrix

M2
H± =


M2±

11 M2±
12

M2±
21 M2±

22


 , (20)
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and the eigenvalue of this matrix yields, when CP is not conserved, the expression

m2
H± =

κ∆2
b∆

2
t

3v2Σbvdv2SΣtvu
(Σt(3Y

2
b v

2
S(FbΣb(µAb(Cb(v

4
d + v4u) + 2Sbv

2
dv

2
u)− A2

bvdv
3
u − µ2v3dvu)

− Σ2
bvdv

3
u(Fb +Gb − 2) + ∆2

b(Gb − 2)vdv
3
u)− Σb(v

4
d + v4u)(8π

2vdvu(4µ
2 − g22v

2
S)− µχv2S)

+ 6Y 4
b Σbv

3
dv

2
Sv

3
u(ln(

m2
b

Q2
)− 1)) + 3ΣbY

2
t v

2
S(FtΣt(µAt(Ct(v

4
d + v4u) + 2v2dStv

2
u)− A2

tv
3
dvu − µ2vdv

3
u)

− v3dΣ
2
t vu(Ft +Gt − 2) + v3d(Gt − 2)∆2

tvu) + 6Σbv
3
dY

4
t v

2
SΣtv

3
u(ln(

m2
t

Q2
)− 1)). (21)

where we defined the loop function

Gf = 2 + ln

(
m2
f̃1

m2
f̃2

)
Σf
∆f

, (22)

with f = t, b. From this it is easy to obtain the mass of the charged Higgs in the CP

conserving case. This can be achieved by taking the limits Ct → 1, Cb → 1 and St → 0,

Sb → 0. We present explicitly the four entries of the charged Higgs mass-squared matrix in

the Appendices.

D. The Neutralino Mass Matrix in U(1)′

The presence of the CP-violating affects the chargino, neutralino and scalar quark mass

matrices. As we are concerned here with the (tree-level) Higgs decays into neutralinos, we

show the effect on the phases on the neutralino mass matrix. Note that the chargino mass

matrix is unchanged from the MSSM one, though it depends on U(1)′ breaking scale through

the µ → µeff parameter in the mass matrix. Similarly, the elements in the sfermion mass

matrices are modified due to the presence of the Z ′ boson. Their explicit expressions have

appeared elsewhere [26].

The neutralino sector of the U(1)′ is like the MSSM, but enlarged by a pair of higgsino

and gaugino states, namely S̃ (referred to as singlino) and B̃′, the bare state of which we

call bino-prime, while Z̃ ′ (zino-prime) is the physical mixed state. The mass matrix for the

11



six neutralinos in the (B̃, W̃ 3, H̃0
d , H̃

0
u, S̃, B̃

′) basis is given by a complex symmetric matrix:

Mψ0 =




M1 0 −MZcβsW MZsβsW 0 MK

0 M2 MZcβcW −MZsβcW 0 0

−MZcβsW MZcβcW 0 −µeff −µλsβ QHd
Mvcβ

MZsβsW −MZsβcW −µeff 0 −µλcβ QHu
Mvsβ

0 0 −µλsβ −µλcβ 0 QSMs

MK 0 QHd
Mvcβ QHu

Mvsβ QSMs M ′
1




,

(23)

with gaugino mass parameters M1 , M2 , M ′
1 and MK [27] for B̃ , W̃ 3 , B̃′ and B̃ − B̃′

mixing respectively, tanβ = vu/vd, and θW denotes the electroweak mixing angle. After

electroweak breaking there are two additional mixing parameters:

Mv = gY ′v and Ms = gY ′vS. (24)

Moreover, the doublet-doublet higgsino and doublet-singlet higgsino mixing mass mixings

are generated to be

µeff = YS
vS√
2
eiθs , µλ = YS

v√
2
, (25)

where v =
√
v2u + v2d. The neutralinos mass eigenstates are Majorana spinors, and they can

be obtained by diagonalization

χ0
i = Nijψj , χ̃0 = (χ0, χ̄

0
i )
T , (26)

The neutralino mass matrix is diagonalized by the same unitary matrix

N †Mχ0N = diag(m̃χ0

1
, ..., m̃χ0

6
). (27)

The additional neutralino mass eigenstates due to new higgsino and gaugino fields encode

the effects of U(1)′ models, wherever neutralinos play a role such as in magnetic and electric

dipole moments, kaon mixing, or in Higgs decays.
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III. CONSTRAINTS AND IMPLICATIONS FOR THE CP VIOLATING HIGGS

SECTOR

A. Electric Dipole Moments

The experimental bounds on the electric dipole moments of the neutron dn < 6.3×10−26e

cm and the electron de < 1.8 × 10−27e cm [17, 29], are some of the most tightly bound

measurements in physics. The electric dipole moment (EDM) of a spin-1
2

particle is defined

from the effective Lagrangian [28]

LI = − i

2
df ψ̄σµνγ5ψF

µν , (28)

and it is induced at the loop level if the theory contains a source of CP violation at the

tree level. Unlike the SM, where the EDMs are generated through the phase of the CKM

matrix at higher loop level and are thus small, in MSSM, where they are generated at

one-loop level, the electric dipole moments are very important, and they provide important

restrictions on the parameter space of the model. In U(1)′ supersymmetric models, they

acquire contributions from gluinos (for neutron EDM) and chargino and neutralino (for

both neutron and electron EDMs), and the contributions are generated by µeff = µeiθs,

with an additional contribution generated by the Z̃ ′ neutralino. The EDM was analyzed in

[22] in the limit in which the sfermions are much heavier than the Z̃ ′.

The neutralino contributions to EDMs tends to be overall subdominant. To suppress

the EDMs we can proceed as in the MSSM [28]: we can require that the trilinear stop

coupling be mostly diagonal Ai=jt ≫ Ai 6=jt (that would suppress the sfermion contribution);

we can assume cancellation between different SUSY contributions (in particular destructive

interference between gluinos and charginos); or we can require that the first and second

generation sfermion masses be in the TeV region. Alternatively, one can assume generically

small CP-violating phases, a path we do not wish to follow here, not just based on natural-

ness, but because we wish to investigate the effects of the phases on Higgs phenomenology.

In the case where gY ′ = gY , the case we consider here, the constraints on U(1)′ parameters

are similar to those on the MSSM. The parameter space we choose for our benchmark points

insures that the contributions to the EDMs are sufficiently small.
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B. CP violation in K0 − K̄0 mixing

The physical phases of the Higgs singlet and in the scalar fermion, chargino and neutralino

mass matrices could alter the the value of the measure of the CP violation inK0−K̄0 mixing,

measured to be εK = (2.271± 0.017)× 10−3 [17].

The contributions to the indirect CP violation parameter of the kaon sector, defined as

εK ≃ eiπ/4√
2

ImM12

∆mK

, (29)

with ∆mK the long- and short-lived kaon mass difference, and M12 the off-diagonal element

of the neutral kaon mass matrix, is related to the effective Hamiltonian that governs ∆S = 2

transitions as

M12 =
〈K0|H∆S=2

eff
|K̄0〉

2mK
, with H∆S=2

eff
=
∑

i

ciOi . (30)

Here ci are the Wilson coefficients and Oi the corresponding four-fermion operators. In the

presence of SUSY contributions, the Wilson coefficients can be decomposed as a sum

ci = cWi + cH
±

i + cχ̃
±

i + cg̃i + cχ̃
0

i ,

where the first contribution is the SM one, the second is the charged Higgs, and the rest are

supersymmetric contributions. In U(1)′ models, the dominant supersymmetric contributions

come from the chargino mediated box diagrams, and the ∆S = 2 transition is largely

dominated by the (V − A) operator O1 = d̄γµPLsd̄γµPLs, similar to the MSSM, and the

chargino contribution is larger than the charged Higgs contributions. The contribution in

terms of the bare chargino states is approximately [23]:

ImM12 ≈
2G2

Ff
2
KmKM

4
W

3π2〈mq̃〉8
(V ∗

tdVts)m
2
t | mW̃± − cotβ mH̃±|

×
{
∆At sin θs (m

2
q̃)12 I(rW̃±, rH̃±, rt̃L , rt̃R)

}
, (31)

where fK is the kaon decay constant and mK the kaon mass; Vij are the VCKM elements,

〈mq̃〉 is the average squark mass, taken equal to MSUSY; mW̃± = M2 is the wino mass, and

mH̃± = µ is the higgsino mass, and ri = m2
i /〈mq̃〉2. The non-universality in the LL soft

breaking masses is parametrized by (m2
q̃)12, and the non-universality in the soft trilinear

terms is parametrized by ∆At ≡ A13
t − A23

t . Finally, I is the loop function which can be

reduced to elementary functions in the limit of degenerate squark masses.

14



Scanning the parameter space of the model, we checked that one can find parameter sets

that satisfy the minimization conditions of the Higgs potential, have an associated Higgs

boson spectrum compatible with the LHC boson, and still succeed in obeying the bound

for the observed value of εK . From Eq. (31), it appears that εK depends on 1/M8
SUSY. To

satisfy the experimental value of εK , values of MSUSY ≥ 1 TeV would have to be assumed,

or ∆At ≡ A13
t − A23

t ≪ 1, in agreement with our EDM considerations. Too small values of

MSUSY might generate a light Higgs boson spectrum already excluded by LEP and LHC,

and for MSUSY ∼ 1 TeV, which is consistent with our squark and slepton masses, the

supersymmetric contributions to εK are consistent with the experimental constraints.

IV. NUMERICAL ANALYSIS

As mentioned in the introduction, gauge extensions of the SM by one or several non-

anomalous U(1)′ gauge groups can arise naturally from a string-inspired E6SSM model

[18, 19]. In E6SSM models the matter sector includes a 27-representation for each family

of quarks and leptons (including right-handed neutrinos), Higgs representations (doublets

Hu and Hd and singlet S), and three-families of extra down-like color triplets. Anomaly

cancellation occurs generation by generation, and gauge coupling unification requires another

pair of Higgs-like multiplets. Breaking of E6 yields SU(3) × SU(2) × U(1)Y × U(1)′ as a

low energy group. Anomaly-free U(1)′ groups are thus generated this way, directly, or as

a specific linear combination. We first define the models that shall be investigated in our

numerical analysis. They all emerge from breaking of higher groups [31]. For instance, the

anomaly free groups U(1)ψ [32] and U(1)χ [33] are defined by:

E6 → SO(10)× U(1)ψ, SO(10) → SU(5)× U(1)χ.

In general a U(1)′ ≡ U(1)E6
group is defined as U(1)E6

= cos θE6
U(1)χ + sin θE6

U(1)ψ, and

we distinguish among the different scenario by the values of θE6
:

• θη = π− arctan
√

5
3

for U(1)η wich occurs in Calabi-Yau compactification of heterotic

strings [34];

• θS = arctan
√
15/9 for the secluded U(1)S, where the tension between the electroweak

scale and developing a large enough Z ′ mass is resolved by the inclusion of additional

singlets [35];
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• θI = arctan
√

3
5

for the inert U(1)I , which has a charge orthogonal to Qη [36];

• θN = arctan
√
15 for U(1)N , where νc has zero charge, allowing for large Majorana

masses [37, 38]; and

• θψ =
π

2
for U(1)ψ, defined above from the breaking of E6 [32].

In the Table I below, we list the charges for the fundamental representations of E6 in the

U(1)′ models which we use for numerical investigations of Higgs boson properties.

SO(10) representations SU(5) representations 2
√
15Qη 2

√
15QS 2QI 2

√
10QN 2

√
6Qψ

16 10 (u, d, uc, e+) −2 −1/2 0 1 1

(u, d, ν, e−, uc, dc, νc, e+) 5
∗ (dc, ν, e−) 1 4 −1 2 1

νc −5 -5 1 0 1

10 5 (Hu) 4 1 0 −2 −2

(Hu,Hd) 5
∗ (Hd) 1 −7/2 1 −3 −2

1 (S) 1 (S) −5 5/2 −1 5 4

TABLE I. Values of U(1)η , U(1)S , U(1)I , U(1)N and U(1)ψ charges for the 27 fundamental rep-

resentation of E6 decomposition under SO(10) and SU(5) representations. The charge for each

model is defined as Q = cos θE6
Qχ + sin θE6

Qψ.

In what follows, we investigate the consequences of each of the anomaly-free groups

on the Higgs production and decay at the LHC. In Table II we list the relevant benchmark

parameters for each of the choices, for both the CP-violating (CP-conserving) Higgs sectors†.

In addition to the phase θs (which defines the CP violating scenario of each model), the

values of tanβ and of µ, we give the U(1)Y and SU(2)L gaugino masses M1 and M2, the

left and right handed squark soft mass parameters MQi
and MUi

(all taken to be 1 TeV,

including the masses in the down scalar sector, not explicitly shown), the trilinear couplings

in the top and bottom scalar quark sectors, At and Ab, and the ratios RY ′ =
M ′

1

M1
and

RY Y ′ =
MK

M1
, as defined in [26]. The constraints on the mass parameters, constraining the

choice of benchmark values, are:

† By CP violating scenario, we mean the specific case where θs is given by the values in Table II.
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• Requiring the lightest Higgs mass to be very close to 126 GeV, in agreement with the

ATLAS and CMS results;

• Requiring the next lightest neutral Higgs boson to have mass mH0

2
> 600 GeV (as it

has not been observed at LHC);

• Requiring the lightest neutralino mass to be consistent with collider limits on Z boson

decays, but also to allow for the possibility of the neutral Higgs boson to decay into a

neutralino pair;

• Choosing the lightest neutralino to be the LSP and requiring that the relic density

constraint be satisfied;

• Choosing the Z ′ boson mass to be consistent with present limits [17];

• Choosing scalar masses and trilinear couplings which satisfy constraints from EDMs

and CP violation in the kaon sector, as described in the previous section (III).

As we would like to allow the Higgs boson to be kinematically allowed to decay into two

neutralinos, we impose the LEP constraint on the Z boson width [43] Γ(Z → χ̃0
1χ̃

0
1) < 3

MeV. This constraint allows for a weakening of the Particle Data bound [17], especially as we

do not impose the supersymmetric grand unified theory relationship M1 = (5/3) tan2 θWM2,

and allow M1 and M2 to be free parameters, as given in Table II. Note that in particular,

the bino mass is chosen to be light to allow Higgs decays into neutralinos, while value for

M2 insures that the chargino mass will be mχ̃±

1

> mH0

1
/2. The scalar fermions are heavy

to satisfy bounds from the EDMs and εK . We choose the value of θs for each model to

maximize the invisible decay width for the lightest Higgs boson, while satisfying the other

constraints‡.

Based on the input parameters, we calculate the spectrum of the physical masses of the

extra particles in the model, which are used in our numerical evaluations. These values are

given in Table III. We also included in this table the relic density of the dark matter for

all scenarios. Throughout our considerations the lightest neutralino χ̃0
1 is the lightest super-

symmetric particle (LSP) and thus subject to cosmological constraints. The relic calculation

‡ Our benchmarks are different from those NMSSM [44], where CP conservation was assumed, and where

the dominant decay mode of the lightest CP-even Higgs is into the pseudoscalar Higgs boson pairs.
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Parameters U(1)η U(1)S U(1)I U(1)N U(1)ψ

θs 42(0) 75(0) 60(0) 55(0) 33(0)

tan β 1.8(1.7) 1.46(1.42) 1.3(2.5) 1.5(1.8) 1.75(1.75)

µ(|µeff |) 360(360) 715(730) 465(461) 292(295) 285(290)

M1 48(50) 56(59) 57(50) 49(50) 49(51)

M2 125(130) 115(120) 135(120) 130(170) 140(160)

MQ1
1000(1000) 1250(850) 750(600) 2000(300) 1000(1000)

MQ2
1000(1000) 1250(850) 750(600) 2000(300) 1000(1000)

MQ3
1000(1000) 1250(850) 750(600) 2000(300) 1000(1000)

MU1
1000(1000) 1250(850) 750(600) 2000(300) 1000(1000)

MU2
1000(1000) 1250(850) 750(600) 2000(300) 1000(1000)

MU3
1000(1000) 1250(850) 750(600) 2000(300) 1000(1000)

|At| 1850(2000) 2200(2500) 2500(1500) 2250(2000) 2000(2000)

|Ab| 2000(2000) 2500(2500) 2500(1500) 2500(2000) 2000(2000)

RY ′ 1(1) 2.5(0.1) 0.1(6.6) 1(1) 5(5)

RY Y ′ 1(2.2) 0.1(0.1) 2(6.6) 6(2.7) 0.1(5)

TABLE II. The benchmark points (in GeV) for the CP-violating (CP-conserving) U(1)η , U(1)S ,

U(1)I , U(1)N and U(1)ψ versions of U(1)′ models.

is straightforward using the Micromegas package [39], once we include the U(1)′ model files

from CalcHEP [40]. All the numbers are within the 1σ range of the WMAP result [41] from

the Sloan Digital Sky Survey [42]

ΩDMh
2 = 0.111+0.011

−0.015 . (32)

The relic density of the dark matter ΩDMh
2 is very sensitive to the free parameter RY ′ listed

in Table II. As the lightest neutralino plays an essential role in the decay of the lightest

Higgs boson, we first show the dependence of its mass, and of the relic density with the

CP violating parameter θs in Fig. 1. In all of the U(1)′ models under study the lightest

neutralino is mostly bino. The variations of its mass and of the relic density with the other

CP violating phase θt are negligible. Note that the mass of the LSP increases smoothly

with increasing θs, while the relic density measurement (shown as a green band in the right-

handed part of the plot) poses restrictions on the combined LSP mass and CP violating

parameter. The values of θs for various models listed in Table II fall into the range of the

values allowed by the relic density (within the green band). We incorporate these restrictions

in our analysis of Higgs mass and decay widths.
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Masses U(1)η U(1)S U(1)I U(1)N U(1)ψ

mZ′ 1510(1510) 1507(1539) 1513(1500) 1502(1517) 1513(1540)

mχ̃0

1

43(43) 55(55) 54(44) 43(42) 42(42)

mχ̃0

2

108(109) 112(110) 125(107) 111(137) 114(128)

mχ̃0

3

361(361) 715(730) 464(463) 292(297) 286(292)

mχ̃0

4

386(388) 726(742) 485(479) 326(336) 322(331)

mχ̃0

5

1487(1489) 1440(1536) 1514(1378) 1505(1498) 1396(1438)

mχ̃0

6

1535(1540) 1580(1543) 1521(1711) 1556(1549) 1641(1694)

mχ̃±

1

107(107) 111(110) 124(106) 108(134) 111(125)

mχ̃±

2

382(384) 724(740) 481(477) 321(332) 318(326)

mH0

1

125.0(125.0) 125.6(125.0) 125.8(126.0) 125.6(126.0) 125.4(125.0)

mH0

2

743(747) 969(1027) 788(930) 642(688) 665(679)

mH0

3

750(754) 977(1033) 798(933) 652(695) 673(687)

mH0

4

1510(1510) 1508(1539) 1513(1500) 1502(1517) 1513(1540)

mH± 572(543) 717(711) 507(802) 418(504) 486(486)

mẽL 1341(1341) 1837(1616) 1306(1219) 700(742) 1134(1139)

mẽR 1054(1054) 1154(695) 748(598) 513(564) 1133(1137)

mµ̃L 1341(1341) 1837(1616) 1306(1219) 700(742) 1134(1139)

mµ̃R 1054(1054) 1154(695) 748(598) 513(564) 1133(1137)

mτ̃1 1054(1054) 1154(695) 748(598) 513(564) 1133(1137)

mτ̃2 1342(1341) 1837(1616) 1306(1219) 700(742) 1135(1139)

mν̃e 1340(1340) 1836(1615) 1306(1217) 699(739) 1133(1137)

mν̃µ 1340(1340) 1836(1615) 1306(1217) 699(739) 1133(1137)

mν̃τ 1340(1340) 1836(1615) 1306(1217) 699(739) 1133(1137)

mũL 1054(1054) 879(874) 999(998) 1106(1108) 1133(1137)

mũR 1055(1055) 882(877) 1001(1000) 1107(1109) 1134(1138)

md̃L
1056(1055) 880(875) 1000(1001) 1107(1109) 1134(1139)

md̃R
1340(1340) 1675(1698) 1463(1457) 1203(1207) 1133(1138)

mc̃L 1054(1054) 879(874) 999(998) 1106(1108) 1133(1137)

mc̃R 1055(1055) 882(877) 1001(1000) 1107(1109) 1134(1138)

ms̃L 1056(1055) 880(875) 1000(1001) 1107(1109) 1134(1139)

ms̃R 1340(1340) 1675(1698) 1463(1457) 1203(1207) 1133(1138)

mt̃1
919(911) 659(670) 788(894) 938(968) 994(1002)

mt̃2
1201(1207) 1085(1070) 1200(1122) 1277(1275) 1281(1283)

mb̃1
1056(1055) 880(875) 1000(1001) 1107(1109) 1130(1135)

mb̃2
1340(1340) 1675(1698) 1463(1457) 1203(1207) 1137(1141)

ΩDM 0.114(0.120) 0.100(0.102) 0.113(0.120) 0.111(0.117) 0.117(0.101)

TABLE III. The mass spectra (in GeV) and the relic density ΩDM values for the CP-violating

(CP-conserving) version of the scenarios considered given in Table II for the U(1)′ models.
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FIG. 1. Mass of the lightest neutralino and the relic density as functions of θs (the phase of the

new singlet S) for the CP-violating versions of U(1)η , U(1)S , U(1)I , U(1)N and U(1)ψ models. The

green band indicates the experimentally allowed region.

We proceed to examine the effects of the CP violating phases on the masses, production

cross sections and branching ratios of the lightest Higgs boson.

A. The lightest CP-even neutral Higgs boson

The observation of the new boson at the LHC has fueled speculations of its nature (is

it or not the SM Higgs boson), coupled with analyses of its mass and couplings, and their

comparison with the experimental data. ATLAS [45] and CMS [46] have reported updates

on the combined strength values for main channels, including H0 → bb̄, γγ, τ+τ−,WW ∗(→
ℓνℓν) and ZZ∗(→ 4ℓ). While the results still have significant experimental and systematic

uncertainties, these are expected to decrease with LHC operating at
√
s = 14 TeV and

increased luminosity. The precise determination of the Higgs couplings to different channels

will establish whether the boson observed at the LHC is the SM Higgs boson. In our

analysis, we wish to explore the possibility that Higgs boson decays in a non-SM fashion, in

particular, that it can decay significantly invisibly. A invisible decay mode is very hard to

measure directly at the colliders. However, it is not difficult to be inferred indirectly. The

total decay width of a SM Higgs boson with mass of 125 GeV is approximately ΓH0 = 4.2

GeV. A discrepancy between the theoretical and experimental value for the width would be

an indication of additional decay channels beyond SM. Similarly, reduced decay branching
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ratios into known SM Higgs decay modes, in particular for H0 → bb̄ and H0 → τ+τ−

(dominant for mH0 = 126 GeV), could also indicate that other decays are important.

At tan β ≈ 1 the lightest Higgs mass is determined mostly by the new F - and D-terms

in the Higgs tree-level potential, and is thus sensitive to the trilinear Yukawa coupling YS

and the gauge coupling gY ′(= gY ) in the numerical analysis. We first present our results for

the dependence of the masses on the CP violating phases arg (µeff) = θs and arg (At) = θt,

as well as with tan β in Fig. 2. One can see that the mass variations with θs and θt are

significant, especially in U(1)S, where large regions of the parameter space for both phases,

if combined with other measurements, can be eliminated. The dependence on tanβ from

the third panel of the figure seems to indicate that only low values tan β ≈ 1−2 are allowed

for all U(1)′ models, in agreement with the values chosen in Table II.
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FIG. 2. Mass of the lightest neutral Higgs boson as a function of θs (the phase of the new singlet

S), θt (the phase of the soft coupling At), and tan β for the CP-violating versions of U(1)η , U(1)S ,

U(1)I , U(1)N and U(1)ψ models.

To analyze the decay width of the lightest Higgs boson, we first calculate total production

cross section of the lightest Higgs boson (H0
1 ) in various models in Table IV, for θs = 0 (no

CP violation) and for θs as in Table II (with CP violation). We list associated Higgs-vector

boson cross sections, and the total cross section for the vector boson fusion. Though sub-

dominant production modes for Higgs bosons, these are the dominant channels for observing

an invisible decay of the Higgs boson [11]. Note that we do not include here the dominant

production mechanism gg → H0
1 , as this mode is plagued by large QCD corrections, and

thus it is difficult to isolate the invisible decay of the Higgs boson, which in this production
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channel is expected to come from gg → H0
1+jet, and be small. As expected, the vector-boson

fusion production mechanism dominates over the Higgs-vector boson associated production

in all models. The numbers are fairly consistent across the models, and largely independent

of CP violating phases. Thus we forgo plots of the production cross sections and expect that

any differences would show up in the branching ratios of the lightest Higgs boson.

Observables U(1)η U(1)S U(1)I U(1)N U(1)ψ

σ(pp → H0
1Z) 639(642) 631(647) 628(610) 628(624) 634(642)

σ(pp → H0
1W

+) 720(725) 708(725) 705(687) 708(701) 711(720)

σ(pp → H0
1W

−) 445(447) 437(448) 435(424) 437(433) 439(444)

σ(pp → H0
1jj(VBF)) 4983(4930) 4848(4920) 4861(4840) 4874(4850) 4873(4893)

TABLE IV. Total cross sections of associated production channel (H0
1X) and vector boson fusion

production channel (H0
1 jj) (in fb) for the CP-violating (CP-conserving) versions of U(1)η , U(1)S ,

U(1)I , U(1)N and U(1)ψ models considered in the paper.

We list the dominant decay branching ratios (in %) for the lightest neutral Higgs in

our model and for comparison, in the SM in Table V, again for no CP violation (θs = 0)

and with CP violation (with phases as given in Table II). The branching ratios, as well

as the cross sections are largely independent of the θt phase. One can see that, while the

production cross sections are fairly independent of the CP violating phase θs, the branching

ratios are not, showing significant differences between the various U(1)′ scenarios and the

SM in the branching ratios. First, given the fact that the lightest neutralino (the LSP) has

mass mχ̃0

1
< mH0

1
/2, the Higgs boson has a considerable branching ratio into χ̃0

1χ̃
0
1, that is,

a significant invisible width§. This is accompanied by a reduction in the branching ratio to

other two-body decays, in particular τ+τ− andWW ∗. Of all the U(1)′ scenarios, the invisible

width is the smallest in U(1)S, though comparable with the decay width into τ+τ− for the

case of no CP violation. For the other U(1)′ models, the branching ratio for the invisible

decay goes from a low 9% in U(1)I with no CP violating phases, to 54% in U(1)ψ with CP

violation. A general feature emerging from Table V is that the invisible width is enhanced

in the presence of CP violation (θs 6= 0) over the case with θs = 0. This is particularly

§ Note that in principle the Higgs boson can decay into sneutrinos, which can then cascade into neutralinos,

contributing to the invisible width. We preclude this possibility here, as mν̃ < mH0

1

/2 would require soft

left- handed slepton masses of O(100) GeV, in conflict with the EDM constraints.
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strong in the case of U(1)S, where the branching ratio increases for θs (as in Table II) to 3

times of its CP-conserving value, and for U(1)I where it increases more than twofold. The

decay into the invisible mode can reach over 50%, which is similar to the value obtained in

the MSSM [48]. Note that the decay into invisible modes is sometimes at the expense of

the main SM decay into bb̄. In two of the models studied, U(1)S and U(1)I the H0
1 → bb̄

branching ratio is in fact increased with respect to the SM value, while in U(1)η, U(1)N and

U(1)ψ it is suppressed with respect the SM expectations. But a general feature of all these

models is the strong suppression of the H0
1 → (W+W ∗− +W ∗+W−) and H → τ+τ ∗ decay

modes, expected to have a branching ratio of 21.5% and 6%, respectively, in the SM, but

much smaller here. The branching ratio for the decay H0
1 → τ+τ− is between ∼ 2 − 3.5%,

while that for H0
1 → WW ∗ ranges between ∼ 5.5 − 12%. In a nutshell, the Higgs decay

into the invisible mode χ̃0
1χ̃

0
1, is at the expense of H0

1 → W+W− and τ+τ− in all models,

and occasionally due to a suppression of H0
1 → bb̄ in some models. This behavior is not

unexpected, as previous studies have indicated that for light Higgs masses, the decay into

neutralinos and Higgs pseudoscalar pairs (if kinematically allowed) dominate, at the expense

of the SM decay modes. Increasing the lightest Higgs mass opens allowed channels, but the

branching ratios are affected by the mixing with the singlet Higgs field, the pseudoscalar

and the effect of the CP violating phase. However, due to differences in decay patterns

among various anomaly-free versions of the U(1)′ models, a more precise measurement of

the Higgs boson branching ratios at the LHC will serve not only to differentiate between

the SM and the U(1)′ model, but among the different versions of U(1)′’s. In Fig. 3 we

Branching Ratio U(1)η U(1)S U(1)I U(1)N U(1)ψ SM

BR(H0
1 → χ̃0

1χ̃
0
1) 36.0(34.0) 8.0(2.6) 20.0(9.0) 49.0(41.0) 54.0(42) −

BR(H0
1 → bb̄) 48.0(49.0) 70.0(73.0) 60.0(66.0) 38.0(44.0) 36.0(43.0) 60

BR(H0
1 → τ−τ+) 2.3(2.4) 3.5(3.6) 3.0(3.3) 1.9(2.2) 1.8(2.2) 6

BR(H0
1 → WW∗) 7.4(7.2) 10.9(11.1) 9.8(12.0) 6.1(7.5) 5.3(6.6) 21.5

TABLE V. Dominant branching ratios (in %) of H0
1 decay channels for the CP-violating (CP-

conserving) version of the U(1)η , U(1)S , U(1)I , U(1)N and U(1)ψ scenarios considered, and in the

SM.

plot the variation of the branching ratios of the lightest Higgs boson with the CP violating

phase θs. In the first two panels, we depict the dependence of the BR(H0
1 → χ0

1χ
0
1) with θs
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and tanβ. As we have seen previously tan β ∼ 1 − 2 (as in Table II), and in that region

the invisible decay width is large, and very sensitive to tan β. We show the variation of

the branching ratios of the other dominant SM and U(1)′ modes, as well as the that for

BR(H0
1 → 4ℓ), because the LHC is sensitive to this decay in the 124-126 GeV mass range,

and the value is expected to become more precise. Note that we did not include any of

the loop dominated decays, such as H0
1 → gg, γγ, as these are sensitive to the masses and

mixing parameters of the (numerous) particles in the loop, and there no new contributions

to these processes with respect to MSSM. The third panel in the top row of the figure shows

that, while the BR(H0
1 → bb̄) in SM seems to fall somewhere in the middle of predictions

for U(1)′ models, the SM BR(H0
1 → τ+τ−) (bottom row, left side) is 6%, and outside the

range of U(1)′ models, and so is the SM value for the BR(H0
1 →WW ∗) (bottom row, middle

panel). BR(H0
1 → 4ℓ) (bottom row, right panel) is also beyond the upper high end of U(1)′

models predictions; the value expected in the SM is 0.013% while in the U(1)′ models, the

BR’s fall in the ∼ 0.0025−0.0055% range. The results for these decay widths might be more

meaningful experimentally than the invisible Higgs width, which is difficult to measure.

B. The second lightest neutral Higgs boson

If the underlying symmetry in nature is not the SM, it is very likely that more Higgs

boson states will be observed. The U(1)′ models all predict additional neutral and charged

Higgs states. The present collider bounds indicate that the mass of the second lightest

Higgs boson must be heavier than about 600 GeV. In our model, this mass shows explicit

dependence on the CP violating phases θs and θt. This dependence is correlated with the

lightest boson mass. As the mH > 600 GeV mass region will be available to LHC working at

increased
√
s = 14 TeV, we show the mass dependence of the second lightest neutral Higgs

boson in Fig. 4. The variation of this mass with either on the CP violating phases θs or θt

is not as pronounced as for the lightest Higgs boson. Unlike in MSSM, in the majority of

models under study this state appears to have a significant component of the pseudoscalar

A0. We leave the details of the decay width for later, when more experimental information

could become available.
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FIG. 3. BR(H0
1 → χ0

1χ
0
1) as a function of θs and tan β, and BR(H0

1 → bb̄), BR(H0
1 → τ+τ−),

BR(H0
1 → WW ∗) and BR(H0

1 → ℓ+ℓ−Z), as functions of θs for the CP-violating versions of

U(1)η , U(1)S , U(1)I , U(1)N and U(1)ψ models. When available, we also show the value of the

corresponding SM quantity.

V. DISCUSSION AND CONCLUSION

The recent discovery of a Higgs-like boson at the LHC does not preclude the possibility

of beyond the Standard Model (BSM) physics. With increased energy and luminosity, the

couplings of the Higgs boson to SM particles will be measured with increased precision.

In addition to the SM modes, the BSM Higgs boson can decay invisibly (to neutralinos,

heavy neutrinos, or additional scalars). Our work investigates such a possibility, in a U(1)′-

extended supersymmetric model, by analyzing the decay patterns of the lightest neutral

Higgs boson. This study is motivated by the fact that the composition of the Higgs bosons
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2

as a function of θs (the phase of the new singlet S) and θt (the phase of the soft

coupling At) for the CP-violating versions of the U(1)η , U(1)S , U(1)I , U(1)N and U(1)ψ models.

is different from one in the SM or MSSM and hence, production and decay mechanisms are

affected. Also significant is that U(1)′ models, unlike the SM, predict a light Higgs boson

(mH0

1
≃ 125 GeV) naturally.

We chose anomaly-free versions of U(1)′ motivated by breaking of string-inspired E6SSM ,

and study the effects for both the CP-conserving and CP-violating scenarios, and compare

the lightest Higgs boson production and decay to that in the SM. Our analysis has two goals:

one is to analyze effects of CP violation on Higgs masses and decays, the other is look for

differences among each of the U(1)′ models for decay patterns, and identify characteristic

signatures.

We perform a complete study of Higgs sector of the effective U(1)′ models, starting with

calculation of masses and mixings in the Higgs sector, and including corrections from the

stop and sbottom sector to one-loop level. Then we introduce benchmark scenarios for each

E6SSM motivated U(1)′ model, defined in terms of soft parameters, and the Higgs, Z ′ and

sparticle spectra obtained for the benchmarks. We include a complete spectrum for the

neutralinos, and include the saturation of the relic density constraint for each of the five

versions of the U(1)′ models. Our mass spectra calculation is restricted by the inclusion of all

the known constraints on the low energy spectrum, and including all the recent constraints

on the lightest Higgs boson mass, and also for rare decays and cosmological constraints.

We then investigate the cross sections in channels (the vector fusion channel and the

associated Higgs production with a vector boson) most propitious to look for the Higgs
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boson to decay invisibly. While the cross sections are not significantly affected by the CP

phases (coming from the effective µ parameter and the scalar trilinear couplings), the masses

and the branching ratios show significant variations. With one exception, the decay into the

lightest neutralino pair is significant in all, and dominant in two of the five U(1)′ models

under investigation. The invisible decay comes with, sometimes a suppression of the bb̄

decay mode, from 60% to as low as 36%, except for U(1)S and U(1)I , where the branching

ratio is enhanced with respect to the SM, up to 73%, in the absence of CP violating phases.

All models exhibit a strong suppression of τ+τ− mode (by a factor of 2-3), of WW ∗ (by

a factor of 2-5) and of 4ℓ by the same factor. Some of these branching ratios seem to

be in agreement with the present LHC data [45, 46], although the measurements are not

yet precise enough for a conclusive statement. The strong suppression in all U(1)′ models

of the decay into WW ∗ can be traced to the mixing with the singlet, the pseudoscalar,

and the CP-phase contribution, all which are known to modify the couplings of the Higgs

boson with respect to their SM values. Overall, we find that Higgs phenomenology in

U(1)′ model is significantly affected by the CP phases, especially θs, and yields distinct

signatures. The resulting signatures are unlike those of the NMSSM with CP violation,

where the branching ratios of the lightest neutral Higgs boson are fairly independent of

the values of CP phase θs [47]. Some of the signals in U(1)′ are typical of the anomaly-

free versions of the models studied, others are characteristic for a scenario (such as the

enhancement of the branching ratio into bb̄ in U(1)S and U(1)I). While other generic tests

of CP violation in the supersymmetric sector exist, such as measuring chargino polarization

[20], the dependence of the masses and decay patterns of the Higgs boson with the phases

are a much more promising indications for CP violation in U(1)′. Such signatures can be

probed at the LHC, and are within reach at
√
s = 14 TeV with luminosity L = 100 fb−1.

The decay patterns would enable to distinguish U(1)′ models from the SM, but also from

each other. For instance, U(1)S and U(1)I show some similar decay patterns, insofar as the

decay H0
1 → bb̄ is dominant. Among all the models studied, U(1)S is the only one where the

branching ratio of Higgs decay into neutralinos is below 10%; while in U(1)I the branching

ratio into invisible modes is in the 10-20% range. In U(1)η, U(1)N and U(1)ψ, the partial

width into the invisible mode is significant, but in U(1)η it is still slightly below that into bb̄.

Distinguishing between U(1)N and U(1)ψ could also be based on the branching ratio into

the invisible channel, which can be over 50% in U(1)ψ, but under 50% in U(1)N .
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The characteristic signatures at the LHC would be distinctive kinematic distribution of

the two quark jets in the Higgs production through vector boson fusion, compared to the Zjj

and Wjj backgrounds. In the Higgs production with an associated vector boson, the ZH

associated production seems more promising, as a clean signal in the dilepton + 6ET channel

will have little background, unlike the WH model where the single lepton + 6ET suffers from

large background effects from off-shell Drell-Yan production, as previously discussed in the

literature [11]. This scenario also has consequences for other neutral Higgs states, and for

the charged Higgs, the analyses of which await more data.
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Appendix A: Explicit Mass Formula

In these appendices we give the complete and detailed analytical expressions used in our

calculations.

1. Scalar Top and Scalar Bottom Masses

Stop and sbottom mass-squared matrices show clearly the differences between the MSSM

and U(1)′ extended models. As can be seen from the following expressions, extra charges

and gauge couplings affect LL and RR entries especially if the vacuum expectation value of

the S field is sizable (vS ≥ 1 TeV).

The entries of the field dependent M2 for scalar top are given by

M2
LL =M2

Q̃
+ Y 2

t |Hu|2 −
1

4
(g22 −

g2Y
3
)(|Hu|2 − |Hd|2) + g2Y ′QQ(Qu|Hu|2 +Qd|Hd|2 +QS|S|2) ,

M2
RR =M2

Ũ
+ Y 2

t |Hu|2 −
g2Y
3
(|Hu|2 − |Hd|2) + g2Y ′QU(Qu|Hu|2 +Qd|Hd|2 +QS|S|2) ,

M2
LR =M2 †

RL = Yt(A
∗
tH

0∗
u − YSSH

0
d), (A1)
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similarly for the scalar bottom mass-squared, we have

M2
LL =M2

Q̃
+ Y 2

b |Hd|2 +
1

4
(g22 +

g2Y
3
)(|Hu|2 − |Hd|2) + g2Y ′QQ(Qu|Hu|2 +Qd|Hd|2 +QS|S|2) ,

M2
RR =M2

D̃
+ Y 2

b |Hu|2 +
g2Y
6
(|Hu|2 − |Hd|2) + g2Y ′QD(Qu|Hu|2 +Qd|Hd|2 +QS|S|2) ,

M2
LR =M2 †

RL = Yb(A
∗
bH

0∗
d − YSSH

0
u). (A2)

2. Neutral Higgs Boson Masses

The neutral Higgs masses are obtained by diagonalizing the 4 × 4 matrix in Eq. (18).

The explicit values of the entries are:

M2
11 =

κ

3Σtvu

[
Σt(3∆

2
t (∆

2
b(2Y

4
t v

3
u ln(

m2
t̃1
m2
t̃2

m4
t

) + µvd(AbCbFbY
2
b + AtCtFtY

2
t ))

+ 2µ2GbY
4
b vu(AbCbvd − µvu)

2) + 6A2
t∆

2
bGtY

4
t vu(µCtvd − Atvu)

2 + 64π2∆2
b∆

2
tλuv

3
u)

+ 12At∆
2
b(Gt − 2)Y 4

t ∆
2
t v

2
u(µCtvd − Atvu) + µχ∆2

bvd∆
2
tΣt

]
, (A3)

M2
12 =

−κ
3ΣbΣt

[
∆2
tΣt(Σb(3µAbY

2
b (2GbY

2
b (AbCbvd − µvu)(Abvd − µCbvu) + Cb∆

2
bFb)

− 32π2∆2
bvdvuλud) + 6µ∆2

b(Gb − 2)Y 4
b vd(µvu − AbCbvd) + µχ∆2

bΣb)

+ 6µ∆2
bΣbY

4
t (µvd −AtCtvu)(AtGtΣt(µCtvd −Atvu) + (Gt − 2)∆2

tvu)

+ 3µAt∆
2
bΣbCtFtY

2
t ∆

2
tΣt

]
, (A4)

M2
13 =

κ

3vSΣt

[
∆2
tΣt(∆

2
b(3µFbY

2
b (2µvu − AbCbvd) + 32π2v2Svuλus)

+ 6µ2GbY
4
b vu(AbCbvd − µvu)

2 − µχ∆2
bvd)− 3µAt∆

2
bCtvdFtY

2
t ∆

2
tΣt

− 6µ∆2
bvdY

4
t (µvd − AtCtvu)(AtGtΣt(µCtvd − Atvu) + (Gt − 2)∆2

t vu)

]
, (A5)

M2
14 =

2κµω

vSΣt

[
Σt(µAbGbY

4
b Sb∆

2
t (µvu − AbCbvd) + A2

t∆
2
bGtY

4
t St(Atvu − µCtvd))

− At∆
2
b(Gt − 2)Y 4

t St∆
2
t vu

]
, (A6)
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M2
22 =

κ

3Σbvd

[
Σb(3∆

2
t (∆

2
b(2Y

4
b v

3
d ln(

m2
b̃1
m2
b̃2

m4
b

) + µvu(AbCbFbY
2
b + AtCtFtY

2
t ))

+ 2A2
bGbY

4
b vd(Abvd − µCbvu)

2) + 6µ2∆2
bvdGtY

4
t (µvd − AtCtvu)

2 + 64π2∆2
bλdv

3
d∆

2
t )

− 12Ab∆
2
b(Gb − 2)Y 4

b v
2
d∆

2
t (Abvd − µCbvu) + µχ∆2

bΣb∆
2
t vu

]
, (A7)

M2
23 =

κ

3ΣbvS

[
∆2
t (Σb(3µ∆

2
b(FtY

2
t (2µvd −AtCtvu)−AbCbFbY

2
b vu)

− 6µAbGbY
4
b vu(µvu − AbCbvd)(µCbvu −Abvd) + 32π2∆2

bvdλdsv
2
S)

+ 6µ∆2
b(Gb − 2)Y 4

b vdvu(AbCbvd − µvu)) + 6µ2∆2
bΣbvdGtY

4
t (µvd − AtCtvu)

2

− µχ∆2
bΣb∆

2
t vu

]
, (A8)

M2
24 =

2κµω

ΣbvS

[
Σb(A

2
bGbY

4
b Sb∆

2
t (Abvd − µCbvu) + µAt∆

2
bGtY

4
t St(µvd −AtCtvu))

− Ab∆
2
b(Gb − 2)Y 4

b Sbvd∆
2
t

]
, (A9)

M2
33 =

κ

3v2s

[
∆2
t (3µvu(∆

2
bvd(AbCbFbY

2
b + AtCtFtY

2
t ) + 2µGbY

4
b vu(AbCbvd − µvu)

2

]
(A10)

+ 64π2∆2
bλsv

4
S) + 6µ2∆2

bv
2
dGtY

4
t (µvd − AtCtvu)

2 + µχ∆2
bvd∆

2
tvu), (A11)

M2
34 =

2κµ2ω

v2S

[
AbGbY

4
b Sb∆

2
tvu(µvu −AbCbvd) + At∆

2
bvdGtY

4
t St(µvd − AtCtvu)

]
, (A12)

M2
44 =

κµω2

3vdv2Svu

[
3∆2

t (∆
2
b(AbCbFbY

2
b + AtCtFtY

2
t ) + 2µA2

bGbY
4
b S

2
b vdvu)

+ 6µA2
t∆

2
bvdGtY

4
t S

2
t vu + χ∆2

b∆
2
t

]
. (A13)

3. CP-odd Tadpole Terms

Explicit form of the CP-odd tadpole terms are

T4 = µASvd sin(θΣ + θS) +
1

32π2
3µvd(AbFbY

2
b Sb + AtFtY

2
t St),

T5 = µASvu sin(θΣ + θS) +
1

32π2
3µvu(AbFbY

2
b Sb + AtFtY

2
t St),

T6 =
µASvdvu sin(θΣ + θS)

vS
+

1

32π2vS
3µvdvu(AbFbY

2
b Sb + AtFtY

2
t St). (A14)
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4. Charged Higgs Boson Masses

Finally, the charged Higgs mass is obtained by diagonalizing the matrix in Eq. (20). One

of the eigenvalues will be the Goldstone boson needed to give mass to the W± boson, the

other is the real charged Higgs mass. The explicit entries in (20) are:

M2±
11 =

1

3v2v2SΣtvu

[
κ∆2

bvd∆
2
t (Σt(µv

2
dv

2
S(3AbCbFbY

2
b + χ) + 3µAbFbY

2
b Sbv

2
Sv

2
u

+ vdvu(8π
2v2d(g

2
2v

2
S − 4µ2)− 3µ2FbY

2
b v

2
S)) + 3Y 2

t v
2
S(AtFtΣt(vu(µStvu − Atvd) + µCtv

2
d)

− vdΣ
2
t vu(Ft +Gt − 2) + vd(Gt − 2)∆2

tvu) + 6vdY
4
t v

2
SΣtv

3
u(ln(

m2
t

Q2
)− 1))

]
, (A15)

M2±
12 =

1

3v2Σbv2S

[
κ∆2

b∆
2
t (Σb(3µAtFtY

2
t v

2
S(Ctv

2
u + v2dSt) + vu(−3µ2vdFtY

2
t v

2
S

+ 8π2vdv
2
u(g

2
2v

2
S − 4µ2) + µχv2Svu)) + 3Y 2

b v
2
S(AbFbΣb(vu(µCbvu − Abvd) + µSbv

2
d)

− Σ2
bvdvu(Fb +Gb − 2) + ∆2

b(Gb − 2)vdvu) + 6Y 4
b Σbv

3
dv

2
Svu(ln(

m2
b

Q2
)− 1))

]
, (A16)

M2±
21 =

1

3v2v2SΣt

[
κ∆2

b∆
2
t (Σt(µv

2
dv

2
S(3AbCbFbY

2
b + χ) + 3µAbFbY

2
b Sbv

2
Sv

2
u

+ vdvu(8π
2v2d(g

2
2v

2
S − 4µ2)− 3µ2FbY

2
b v

2
S)) + 3Y 2

t v
2
S(AtFtΣt(vu(µStvu − Atvd) + µCtv

2
d)

− vdΣ
2
t vu(Ft +Gt − 2) + vd(Gt − 2)∆2

tvu) + 6vdY
4
t v

2
SΣtv

3
u(ln(

m2
t

Q2
)− 1))

]
, (A17)

M2±
22 =

1

3v2Σbvdv2S

[
κ∆2

b∆
2
t vu(Σb(3µAtFtY

2
t v

2
S(Ctv

2
u + v2dSt) + vu(−3µ2vdFtY

2
t v

2
S

+ 8π2vdv
2
u(g

2
2v

2
S − 4µ2) + µχv2Svu)) + 3Y 2

b v
2
S(AbFbΣb(vu(µCbvu − Abvd) + µSbv

2
d)

− Σ2
bvdvu(Fb +Gb − 2) + ∆2

b(Gb − 2)vdvu) + 6Y 4
b Σbv

3
dv

2
Svu(ln(

m2
b

Q2
)− 1))

]
. (A18)

5. Auxiliary Expressions

In the above expressions, we use the following short-hand notations:

χ =
√

1024π4A2
S − 9(AbFbY 2

b Sb + AtFtY 2
t St)

2, (A19)
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and

λu =
1

2
Q2
ug

2
Y ′ +

g2

8
,

λd =
1

2
Q2
dg

2
Y ′ +

g2

8
,

λs =
1

2
g2Y ′QSS

2,

λud = QdQug
2
Y ′ − g2

4
+ Y 2

S ,

λds = QdQSg
2
Y ′ + Y 2

S ,

λus = QSQug
2
Y ′ + Y 2

S .

(A20)
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