2012 IEEE 36th International Conference on Computer Software and Applications Workshops

Rule Based Axiomatic Design Theory Guidance for Software Development

Cengiz Togay*, Emre Selman Caniaz', and Ali Hikmet Dogruit
*Computer Engineering Department
Canakkale Onsekiz Mart University, Canakkale, Turkey
Email: ctogay@comu.edu.tr

tVocational High School of Altinoluk

Balikesir University, Balikesir, Turkey
Email: ecaniaz@balikesir.edu.tr

1Computer Engineering Department

Middle East Technical University, Ankara, Turkey

Email: dogru@ceng.metu.edu.tr

Abstract—This research proposes a rule-based approach
to system development with Axiomatic Design Theory. The
basic complexity is the resolution of the constraints across
the Feature Model and the Design parameters addressed
through the Axiomatic Design such as the design matrix and
associated components. A rule based approach effectively can
support the development process during the configuration of
the variability, hence the development of the product. This
work can be classified as a product engineering method within
Software Product Line Engineering. Axiomatic Design Theory
suggests a simultaneous decomposition in different modeling
spaces. Incorporating Axiomatic Design principles in Software
Product Line Engineering, this research aims to provide a
conforming set of development models that co-evolve for an
efficient software production.

Keywords-Axiomatic Design Theory; Feature Model; Com-
ponent Oriented Software Development

I. INTRODUCTION

In component oriented software development, components
are composed to produce a new software product. Depending
on customer expectations, different variations of the compo-
nents form distinct software products in a domain. In time,
the domains are transformed to mature domains through
including various components, design artifacts, dictionaries,
etc. and also through the establishment of a common under-
standing on a dictionary of components, by the developers.
Success of the relations between features and products is de-
pendent on domain maturity and domain expert competence.
In idealized mature domains, customers determine their ex-
pectations through a formal way and systems are developed
through composition of the components automatically. At
the present time, complexity of the software products is
generally beyond the reach of human talents. Therefore, the
demand for the guidance tools for each phase of the software
development is increased. The first step to aid for this kind of
tools is to define end-user expectations in terms of a common
language between customers and developers. One of the
formal ways is to utilize feature models as this common
medium [1] [2]. Features incorporated in these models are

978-0-7695-4758-9/12 $26.00 © 2012 IEEE
DOI 10.1109/COMPSACW.2012.101

544

defined as end-user visible units of behavior [3]. Features are
represented in a feature model as depicted in Figure 1. There
are eight features represented in Figure 1. Features F1 and
F1.1 are mandatory which means that they have to be part
of the requirements. Others are optional. Also an alternative
relation is represented in the figure. Users can select only
one of the alternatives (F2.1, F2.2, or F2.3). Feature models
are generally represented as a tree and they also include rules
and constraints [1] [2]. Feature models are prepared by the
domain experts to represent commonalities and variability
among the domain software products. Customers define their
expectations for a specific product, through selection of
features from the domain feature models. Selected features
should be consistent in terms of the constraints and the tree
notation. There are two approaches to provide consistency,
one of them is evaluating the consistency after all selections
are conducted and the other one is simultaneously testing
the selections and guiding the customer after every selection
action, based on previous selections. Depending on the size
of the domain, relations and dependencies among features,
rules, and constraints increase the complexity of providing
and managing of their consistency. It should be noted that
the number of features in a domain can easily grow up
to few thousands [4]. Number of features, constraints, and
rules specify the complexity of the selection process in
terms of avoiding conflicts and errors [5]. To handle this
complexity, there are various studies discussed in the section
on feature models. In this study, we are generating rules
based on a feature model in order to provide guidance to
the stakeholders (customers, developers, etc).

It should be noted that there is a gap between the customer
needs and a solution [6] [7]. Identifying features is not
enough to find corresponding components and integrate
them automatically but can be helpful for a domain expert.
Feature models capture fundamental needs, but as discussed
in [8] [9], to define behaviors of the components, there
is a need for another approach. One approach is proposed
in [2] and extended in [10]. In [10], different level features

IEEE
computer
® psouety

/\

K/ﬁb\o

F1.1 F1.2 F21

Figure 1. Feature Model

oo

oo

- ol
[S« T < oo
0 — — 00 a o
IR A B
s ee gl
ZE sl ee

i i
n
[ololo
X olojolofo
WMo oclolofofo
ofclolololo
E-OIIZFR olojo @loololo
L@ LL3FR oo oo Elo oo
| L2FR olojojojolo R

Lo L21FR olojojojolo| Elo
L@ 1L22FR copopopoo| oK

Figure 2. Design Matrix

are mapped to objects. Another approach we used in this
study is Axiomatic Design Theory (ADT) [11]. ADT can
be utilized to represent functional requirements (FRs) and
design parameters (DPs) such as methods, components, etc.
and their dependencies in a matrix called FR-DP design
matrix as depicted in Figure 2. In the figure, Xs represent
dependencies and in this uncoupled design matrix each FR
only related with one DP. For instance, FR1.1.1 depends on
DPI1.1.1. Only a standard interface is not enough to define
components’ capabilities; especially it’s provided behaviors.
Therefore, an FR-DP matrix for each component is used to
represent which FRs are satisfied and what are the dependen-
cies of these requirements on the design parameters [8] [9].
The mature domain includes a domain FR-DP matrix called
domain design matrix to represent all FRs, DPs, and their
dependencies. Such domain models are developed during
the domain engineering phase. This domain model is then
utilized in the forming of specialized design matrices for
specific products, during the product engineering phase.
Selected features are utilized to determine the required FRs
and DPs.

In this study, our first contribution is introducing an

545

extension to ADT for design matrices. Depending on the
alternative sets of features, FRs and DPs are incorporated
in the product matrix. However, there is no representation
of Optional, Mandatory, Alternative, Exclude, Require, and
OR relations in a design matrix. In [8] [9], FRs or DPs
are interpreted to be connected through OR and Optional
relations, if there is no dependency. However, other rela-
tions are not included. For instance, Exclude relation is no
accounted. The standard design matrix cannot represent the
excludes relation. Consequently, only some of the FRs can
be satisfied in a project based on customer expectations.
Since representation of all relations in a design matrix
decrease readability, we define new views similar to feature
model notation.

The second contribution of this research is the utilization
of a rule engine referred to as Drools [12] to provide
guidance during design process for all stakeholders involved
in the process (customer, developer, domain expert, etc). All
relations among FRs, DPs, features, components, and rela-
tions (mandatory, optional, exclusive, etc.) are represented
in terms of rules so as this tool requires.

A. Feature Models

Feature models [1] [2] are introduced to capture user
intents and are used by various software development ap-
proaches such as software product line engineering. In [10]
that is an extension of FORM [2], an object oriented ap-
proach for utilizing feature models is proposed. In the [10],
different types of features (capability, operating environ-
ment, domain technologies, etc.) are mapped to domain
architectures and reusable domain objects. In [8] [9], features
are utilized to reach required functional requirements and
some features are utilized to select components from a
component library. Traceability links are utilized in [7].
Change in the domain can take place especially at the
beginning of the domain creation. To decrease the effort
for modifying a domain in terms of it’s feature model and
architectural components, relations between them should be
one-to-one (1:1) [7]. The Feature model has to be consistent
for a domain. Domain feature models can be formed from
various feature models that are prepared independently.
Howeyver, it should be noted that combination of models can
cause consistency problems [4]. Some challenges for feature
models are listed below:

o There is no really agreed notation for feature mod-
els [4]. However, basically new notations are exten-
sions of FODA [1] such as cardinality based feature
models [13].

Same information can be represented with different
feature subtrees. Therefore, combining or integration of
more than one feature model causes various consistency
problems [4].

Customers select features from a domain feature model
to obtain an application feature model that is subset of

the domain feature model. One method, as preferred
by most of the approaches, is the iterative selection
of features from a domain feature model. However,
a customer can forget his past activity and even the
needs can change during the feature selection process.
In this situation, previous decisions are effected by a
new selection at the higher levels of the feature tree [5].
Multiple participants can be included in the feature
selection process at the same time and depending on
their priorities, selected features can be in conflict [14].
Only feature model utilization for a domain is not suf-
ficient for modeling entity-relationships and a business
process. Therefore, feature models should be integrated
or should cooperate with other methods [15].

As a definition of the tree structure each feature has to
have a parent feature except for the root feature. There are
six types of feature relations listed below on a feature tree
and some relations are depicted in Figure 1.

1y

2)

3)

4)

Mandatory: the feature has to be selected.

Optional: the feature can be selected.

OR: one or more children can be selected.
Alternative (XOR): only one of the children has to be
selected.

Require: a feature requires the selection of another
feature. In some notations this relation is directly
represented on the diagram and in some notations it
is externally represented as a constraint.

Exclude: a feature, if selected, requires the exclusion
of another one. In other words, two features cannot be
selected simultaneously for the same product.

5)

6)

In addition to the feature tree structure, some con-
straints/rules can be defined. In some notations the Require
and Exclude relations are directly represented on the diagram
and in some notations they are externally expressed as
constraints/rules. To automatically verify selections, there
is a need for a rule based system. In this study, Drools
rule engine [12] is utilized. Feature models can be prepared
by domain experts and they can represent the same set
of features with different representations. To be formally
consistent, some normalization processes are proposed for
feature models in [16]. There is a relationship between
the number of optional features and the the number of
possible products [16]. There are various studies to handle
consistency of a feature model’s subtree or itself which
includes only the features selected by the customer:

1) Ontology utilization and reasoners: In [8], a feature
model and other software assets are defined in ontol-
ogy and a reasoner is utilized to detect inconsistencies
both in the feature model and in assets in terms of
selected features. However, this process is achieved af-
ter feature selections. There is no guidance during the
selection process. In other studies [4] [15] [17] [18],
a feature model is also represented in an ontology

546

and ontology reasoning for feature models is used to
perform for validating and tailoring guidance.
Propositional logic and SAT solvers: Features and their
relations are represented as propositional terms and
they utilize a SAT solver to automatically classify
changes between the original and the updated feature
models [16]. In another study, a SAT solver is utilized
for debugging feature models [19].

Constraint Satisfaction Problem (CSP): Feature mod-
els are transformed to CSP and a constraint solver
is utilized to find invalid configurations [14]. Also
feature models are transformed to CSP and a constraint
solver is used to automate feature selection [20].

2)

3)

B. Axiomatic Design Theory

Axiomatic Design Theory (ADT) is introduced by Nam
P. Suh and there are various applications in engineering
disciplines [11] [8] [9]. There are four concepts in ADT
namely domains, hierarchies, zigzagging, and axioms. The
domains concept includes the customer domain, the func-
tional domain, the physical domain and the process do-
main. Customer needs are captured in Customer Needs
and they are mapped to Functional Requirements (FRs)
in the functional domain. The FRs are then mapped to
Design Parameters (DPs) in the physical domain and they
are represented in a matrix called FR-DP Design Matrix
as depicted in Figure 2 that also provides the dependency
information regarding functional requirements. Xs represent
dependency between FRs and DPs. Whereas, Os represent
independencies. Gray squares are meaningless as far as a
design matrix is concerned. In terms of software engineering,
DPs can be methods, components or any abstraction of
software components such as packages, data abstraction
etc. Lastly the DPs can be mapped to Process Variables
(PVs) in the process domain but PVs are not used in this
study. Problems are considered in terms of different views
based on these domains. Each of these domains except the
customer domain has been represented as a tree structure.
Each item in the domains is decomposed to define more
specific items until a solution level entity is represented.
This decomposition process is sequentially applied to all
four domains. Based on the hierarchy concept, problems
and solutions are simultaneously decomposed to simpler
parts. Decomposition is conducted simultaneously among
neighboring domains with the zigzagging concept. The
zigzagging concept introduces a parallel decomposition of
all domains except the customer domain. A decomposition
in the previous domain (e.g. FR) is immediately followed
by a decomposition activity in the next domain. This initial
move between the domains is referred to as zig. Next, with a
zag move, previous domain is re-visited for assessing in the
compliance of the zig related action and for conducting the
next decomposition. Successive zig and zag actions continue
until both domains are decomposed to a satisfactory level.

-4 1.1.1DP
- 1.1.2DP

| L1FR
- # LL1FR
‘. # L1ZFR
| L2FR

- # L21FR
‘. # L22FR

o

Figure 3. Uncoupled FR-DP Design Matrix

As the last important concept, ADT has various axioms.
There are two basic axioms namely independence axiom
and information axiom. In this study, we are interested in
the independence axiom which is utilized to determine if
the design type is coupled, uncoupled, or decoupled. For the
uncoupled designs, each FR is mapped to only one DP in
the FR-DP design matrix as depicted in Figure 3. Therefore,
if an FR is modified or deleted, other FRs and DPs are
unaffected. In a decoupled design, one FR can be mapped
to more than one DPs, but there is no cycle between FRs in
terms of dependencies as depicted in Figure 4. For instance
as represented in Figure 4, FR1.1.1 is dependent on FRI1.1.2
and FRI1.2.2. Lastly, a design can be coupled, where FRs
are mapped to DPs but there is cycle among them in terms
of dependency as depicted in Figure 5. For instance, since
FRI.1.1 is dependent on FRI.2.2 and FRI1.2.2 is dependent
on FRI.1.1, there is a cycle in terms of dependencies. If
there is a relation between children items, their parents are
also related. For instance, FRI.I is automatically related
to FR1.2 as depicted in Figure 5. Coupled designs are not
preferred by ADT since they indicate extra complexity when
modifications, reuse, and maintenance are considered. By
means of the information axiom, design is evaluated based
on probability of success among FRs and DPs. This axiom
can be utilized to measure congruity between a DP and a
component during composition [21].

II. PROPOSED APPROACH

In this study, we are proposing a rule based approach to
guide the stakeholders during their feature selections and
design decisions. For instance, if F2.] is dependent on F1.2
as depicted in Figure 1 and F/.2 is not selected, we can guide
the customer to not select F2./ during the selection process.
This inconsistency can be figured out after all or some of the
selections are done, but this situation can cause confusions
for customers since they may face many error conditions
when they return to review the consequence of their deci-

547

- 4 1.1.1 DP

=4 L1FR
. -# LLIFR
. LL2FR
| 1.2FR
. # LL1FR
& 12.2FR

.

I = |
2-J L1FR

~ -# LLIFR
‘. # 1.12FR
| L.2FR

. # LL1FR
‘. # 12.2FR

.

Figure 5. Coupled FR-DP Design Matrix

sions. Therefore, simultaneous guidance is preferred. In a
mature domain, all assets (features, FRs, DPs, and PVs) can
be connected with each other. These connections increase the
complexity of the domain and a stakeholder needs guidance
during the design. In this study, we used a rule engine
(Drools [12]) to represent all the connections. Based on the
connections, stakeholder is guided for selections: the effects
of selecting a feature on the components can be displayed.
At the end of the design, a prototype can be composed by
domain components as depicted in Figure 6. We assume
that all the components are compliant with each other, and
alternative solutions can be formed by available components.
As it can be seen in the figure, stakeholders affect the system
through design item (feature, FR, and DP) selections. All the
assets such as feature model, domain design matrix including
FRs and DPs, component design matrices, and components
and their dependencies are added to the rule engine facts and
rules respectively. For example, all selectable design items
can be enabled automatically through execution of the rule
listed in Table I.

Product

Views
(Feature Model, Design Matrix, Diagrams...)

guidance
s
selects

Stakeholder

Rule Engine

Domain
Domain
Design

Matrices

Component
Design
Matrices

Feature Components

Model

Figure 6. Proposed Approach

Table I
A RULE FOR SPECIFYING SELECTABLE FEATURES

rule ”Specify selectable items”

salience -90

when

item : Designltem(status==Designltem.NOTSELECTABLE, parent!=null);
parent: Designltem(this==item.parent, status==Designltem.SELECTED)
then

modify(item)status=Designltem.SELECTABLE;

end

Another contribution of this paper is an extension to the
mechanisms utilized by ADT. The ADT proposes to find a
solution through specifying FRs, finding DPs, defining de-
pendencies, checking consistency based on the axioms, and
reviewing design if required. However there is no support
for domain design matrices to include alternative designs.
For example, although there is no definition for Optional
FRs or DPs in terms of mature domains, some FRs are
interpreted as optional [8] [9]. In a domain design matrix, if
there is a set of FRs that can be included or extracted without
affecting the solution, this kind of FRs are referred to as
optional FRs. Therefore, in terms of domain, ADT allows
to define the OR relation. However, there is no support for
other kinds of relations (mandatory, optional, alternative,
exclude, and require) among FRs and DPs. We used the
feature model notation to create new views represented in
Figure 7 and Figure 8 for FRs and DPs corresponding to the
design matrix depicted in Figure 2. The same tree structure is
used to represent different views for features, FRs, and DPs.
Some relations (mandatory, optional, or, and alternative) are
represented in the tree and some of them (such as exclusive
and require) are defined as rules external to the tree. In
our implementation, there are four status for a design item
namely, notselectable, selectable, selected, and dependent.
The proposed FR and DP views are created and modified
with corresponding domain design matrix. Normally, all FRs
and DPs are specified as optional and OR relation. A domain
expert can modify these views when required by other
relations (such as, alternative and mandatory). In this study,
features, FRs, and DPs are represented as “Designltem” in
the rules. We defined six types of design item relations as
listed below:

548

1)

2)

3)

4)

5)

6)

The Mandatory relation is used when a design item
has to be part of the solution. This type of FRs are
used to represent the core product capabilities which
provide some basic properties and their relations with
DPs and components.

The Optional relation is used when a design item can
be part of the solution. This type of design items are
specified through feature selections or developers.
The OR relation represents that one or more children
can be selected.

The Alternative (XOR) relation represents the case
where only one of the children has to be selected. As it
can be seen from Figure 7, only one of the FRI.1.2 or
FRI.1.3 can be part of the solution. Another example
is represented in Figure 8, where it can be seen that
there are two alternative DPs namely DP1.1.1.2a and
DP1.1.1.2b. Depending on the features and developer
decisions one of them can be selected. A contribution
of the paper, we represent such alternatives in the
trees (DP tree or FR tree) as depicted in Figure 7 and
Figure 8.

The Require relation represents that a design item
requires the selection of another design item. In some
notations, require relation is directly represented on
the same view and in some notations it is represented
as a constraint rule. We represent this relation as rules
to allow a design item to connect with another type
of design item. For instance, F1.2 is dependent on F1,
FRI1.1.1.2 and DP1.1.1.2b as depicted in Figure 1, Fig-
ure 7, Figure 8, and Table II. As depicted in Figure 1,
when FI is selected F1.2 has to be selected because
of the mandatory relation. Also we can conclude that
to select the F'1.2 feature, its parent feature (/) has to
be selected. FRI.1.1.2 is dependent on DPI1.1.1.2 as
depicted in Figure 2. However, two alternatives of the
DP1.1.1.2 are represented in Figure 8 and it cannot
be represented in the design matrix. Therefore, F1.2
is selected automatically if specified items are selected
as listed Table II. It should be noted that any design
item (feature, FR, and DP) can require other design
items and this relation is represented as rules as listed
in Table II.

The Exclude relation is used if some design items
can never be selected at the same time in a specific
solution. Some design items (FRs, DPs, and features)
cannot be part of the solution with other design items
in different branches of the tree. For instance, we
assume that FRI.2.2 and FRI.I in Figure 7 cannot
simultaneously take part in a solution. In this situation,
we can represent this information with lines in the
view; however it decreases the readability of the view.
For this reason, we defined a rule for this require-
ment to capture and warn stakeholders as depicted
in Table III. It should be noted that if there is a

FR1

FR1.1 FR1.2

SN N

FR1.1.1 FR1.1.2 FR1.1.3 FR1.2.1 FR1.2.2

2 N pviviiigpgivieky
FR1.1.1.1 FR1.1.1.2

Figure 7. Functional Requirements

-------- 1
! @ Mandatory © Optional}

I
lAAlternaﬁve /\Or |

DP1

DP1.1 FR1.2

DP1.1.1DP1.1.2DP1.1.3 DP1.2.1 DP1.2.2

DP1.1.1.1DP1.1.1.2a DP1.1.1.2b

Figure 8. Design Parameters

dependency among design items, to conclude that
FR1.2.2 or FR.1.1 has to be selected, related one is
automatically selected by system. Rules need to be re-
evaluated if the system automatically selects both and
this situation is not desired.

Table 11
DEPENDENCY FR1.2 REQUIRES TO SELECT F1, FR1.1.1.2, AND
DPI1.1.1.2B

rule "FR1.2 requires to select F1, FR1.1.1.2, and DP1.1.1.2b ”

salience -90

when

FR12 : Designltem(name=="FR1.2” status != Designltem.SELECTED)
F1 : Designltem(name=="F1” (status==Designltem.SELECTED))

FR : Designltem(name=="FR1.1.1.2" (status==Designltem.SELECTED))
DP : Designltem(name=="DP1.1.1.2b”,(status==Designltem.SELECTED))
then

modify(FR12)status =Designltem.SELECTED;

end

Table III
EXCLUDE RELATION FOR FR1.2.2 TO FR1.1

rule ”Exclude relation for FR1.2.2 to FR1.1”

salience -90

when

FR1: Designltem(name=="FR1.2.2” status==Designltem.SELECTED)
FR2: Designltem(name=="FR1.1”,(status==Designltem.SELECTED)
then

System.out.println("There is an exclusion conflict. Only one”+

” of the FR1.2.2 or FR1.1 can be part of the solution”);

end

549

A. Domain Design

We assume that there are various products in a domain
that are designed following the ADT and composed from
components as proposed in [8]. To create a mature domain,
domain experts apply the following steps.

1) Create a feature model to capture commonalities and
variability among products.

Create a domain design matrix.

FR and DP trees (views) corresponding to the design
matrix can be automatically created. These trees in-
clude more information than a standard design matrix
because mandatory, optional, require, exclude, etc.
relations can be represented in trees.

Set relations (mandatory, optional, require, exclude,
etc.) among FRs

Set relations (mandatory, optional, require, exclude,
etc.) among DPs

Create relations among design items (features, FRs,
and DPs).

Create rules based on relations among the design
items.

Create rules for feature, FRs, DPs, and relations of
components. Therefore, when a DP in domain design
matrix should be part of the solution, related com-
ponent can be identified. Also features can affect the
selection of correct components.

2)
3)

4)
5)
6)
7

8)

B. Application Design

As depicted in Figure 6, stakeholders utilize the modeling
constituents such as feature model, design matrix, and new
defined FR and DP views as proposed in the following list.

1) Stakeholders select features with guidance from the
proposed approach. Depending on the preselected fea-
tures and relations among features, succeeding selec-
tions will be constrained

Depending on the selected features, system offers a set
of FRs and DPs depending on the rules created during
domain creation.

Stakeholders (especially developers) select FRs and
DPs among the alternatives.

System identifies components based on the selected
DPs.

Components are composed and integration problems
are solved.

If available components are not congruent in terms of
non-functional requirements, new components can be
developed as proposed in [8] and added to the domain.

2)

3)
4)
5)

6)

III. CASE STUDY

In this section, we present a robot development process
as a case study. A feature model for the example domain
is represented in Figure 9. A customer can select required
features from the feature model. Some relations among
features are represented in the following list:

Customers have to select the Environment feature and
then they have to choose between the Outdoor or
Indoor features. In this case study, we assume that
robots can be designed for either Outdoor or Indoor.
Another mandatory feature is the Orientation feature.
Customers have to select Sensor Based or Image Pro-
cessing.

We defined a require relation between Sensor Based
and Sensors. When the Sensor Based feature is selected,
Sensors feature also has to be selected.

Another require relation is defined between Teleop-
eration and Communication. When Teleoperation is
selected, Communication also has to be selected.

In our domain, robots can be oriented in either one
of the two alternatives modeled by Self Oriented or
Teleoperation.It should be noted that there is no exactly
one correct domain. It depends on available products
and domain experts approach. For instance, in another
domain, a robot can be produced having both Self
Oriented and Teleoperation capabilities.

There is an exclude relation between the Indoor feature
and the GPS feature. When the Indoor feature is
selected, the GPS feature can not be selected.

Partial domain design matrix and corresponding views are
depicted in Figure 10, Figure 11, and Figure 12 respectively.
Corresponding views can be automatically produced from
the design matrix. We have represented only id numbers of
the FRs and DPs in views. For instance, the design matrix
includes FR1, and eight sub FRs. FRI.5 includes three sub
FRs. The same information is represented in the FR view as
depicted in Figure 11. Similarly, DP view can be produced
from design matrix. As introduced in the Domain Design
section, a domain expert defines the relations among FRs
(mandatory, optional, etc.), DPs (mandatory, optional, etc.),
and rules for all types of the design items (features, FRs,
and DPs). Relations among the design items are listed in
the following list:

o Except FRI.8, all FRs are defined as optional as
depicted in Figure 11. Selected features affect FRs. For
instance, "FR1.1: Obtain meaningful information from
an image” is an optional FR as depicted in Figure 11. It
is activated when Image Processing feature is selected.
FRI.1 is dependent on ”FR1.2: Capture an image” as
depicted in Figure 10.

There are two ways to represent the alternative relation
for DPs. One of them is to represent it on the view and
another, as a rule. Alternative DPs Wireless and Ether-
net are represented in Figure 12. They are effected by
Wireless and Wire communication features. When Wire
is selected, automatically the Ethernet DP is activated
as a part of the solution. We defined another rule for the
Exclude relation between "FR1.4: Get commands from
the base” and "FR1.6: Orient itself”. Only one of them

550

Robot

Environment Sensors Communication
Yé\) A_
Outdoor Indoot/ Laser GPS \Wireless Wire
Ultrasonic
i . Control
Orientation N

o o

Sensor Image 1
Based Processing

Self Oriented Teleoperation

Figure 9. Feature Model of robot domain

can be part of the solution and they are affected by the
”Control” feature. For example, when Self Oriented is
selected, FR1.6 is activated.

Depending on the defined relations, stakeholders select
the solution design items. For instance, when Environment,
Indoor, Orientation, Sensor Based features are selected,
Sensor, Control, and Communication features are enabled.
When Sensor feature is selected, only Laser and Ultra-
sonic features are enabled. GPS is disabled because of
Exclude relation between Indoor and GPS. When Control
and Teleoperation selected, Communication feature can be
also selected automatically. Lastly, customer selects Wire
feature. Depending on these features, developers evaluate
FRs and DPs to find a solution. When rules are executed,
FR1.4, FRI.5, FRI.5.1, FRI1.5.2, FRI.7, and mandatory
FR1.8 and corresponding DPs are selected automatically as
a part of the solution. For FRI.7, there are two alternative
solutions and ethernet is activated because of wire feature.
Based on the DPs, sets of components are specified and
composed.

IV. CONCLUSION

In this study, we introduced an extension to Axiomatic
Design mechanisms and supported them with a rule engine
to increase guidance for development in a mature domain.
In addition to standard representations of ADT, we proposed
two new views corresponding to FR-DP design matrix for
FRs and DPs to represent Optional, Mandatory, Alternative,
and OR relations. Therefore, commonality and variability
can be represented for mature domains. Since these views
also increase the complexity of the mature domain, relations
are represented as rules. Also, Exclude and Require relations
among all design items (features, FRs, and DPs) are defined
as rules. As a result of this study, all stakeholders of the
development (customers, developers, etc.) can benefit from
the guidance that is produced by the rule base system.
Customers will be informed about allowed feature selections

£ Ev

g 4 358

a .2 85

g .52

Far ved2585

‘ISR I
NECBIRTNN58E
S5 eee 20
EHeooe e
.. H H 1] H H H

-
- # 1.1 Obtain meaningful information from an image B OCcopoo@OO|0|C
1.2 Capture an image O B8O O |CC0f0 000
1.3 Send image to base X |0 OO0 K |0 [1]
1.4 Get commands from the base 0 (0|0 @8O |00 (00X |0
. 1.5 Obtain meaning full information from sensors 0 000K o oo
L. # 1.5.1Getlaser sensor redings 0|00 |0 MO 0000
- # 1.5.2 Get ultrasonic sensor readings 0 |0 [0 |0 O MO |0 |0 0
- # 1.5.3 Get GPS sensor readings 0 |0 (0|0 O |0 @8O |0 [0
- 4 1.6 Orient itself 0 O[O0 (OO0 K80 (O
-4 1.7 Provide communcation with base 000000000 o [2]

- 4 1B Process sensor readings and control robot COOOKXKXOIOODMK

Figure 10. Design matrix of robot domain

FR1

(3]

(4]

FR1.5.1 | FR1.5.3
FR1.4 FR1.5.2 FR1.6

(3]

I
I ® Mandatory © Optional I
lAAIternative /\Or I [6]

Figure 11. FR view corresponding to domain design matrix

DP1

[7]
DP1.1 DP1.8

DP1.2 DP1.7

DP1.3 DP1.5.1 | DP1.5.3\Wwireless ethernet
DP1.4 DP1.5.2 DP1.6

—_

(91

Figure 12. DP view corresponding to domain design matrix

[10]

at a stage of development and developers are informed
about which components can be used. Our experiments

551

have indicated that proposed guidance can be helpful in
increasing a design’s correctness for mature domains that
include various features, components, etc. However, we need
more experimentation especially to verify our approach on
huge models to assess its scalability. As a future work, we
are also planning to specify a domain specific language to
define rules.

REFERENCES

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (foda) feasibil-
ity study,” Carnegie-Mellon University Software Engineering
Institute, Tech. Rep., November 1990.

K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin,
“Form: A feature-oriented reuse method with domain-specific
reference architectures,” Annals of Software Engineering,
vol. 5, pp. 143-168, 1998.

S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer,
“Detection of feature interactions using feature-aware verifi-
cation,” in Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on, November 2011, pp.
372 -375.

L. A. Zaid, F Kleinermann, and O. De Troyer,
“Applying semantic web technology to feature modeling,”
in Proceedings of the 2009 ACM symposium on
Applied Computing, ser. SAC ’09. New York, NY,
USA: ACM, 2009, pp. 1252-1256. [Online]. Available:
http://doi.acm.org/10.1145/1529282.1529563

J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-
Cortes, “Automated diagnosis of product-line configuration
errors in feature models,” in Software Product Line Confer-
ence, 2008. SPLC ’08. 12th International, September 2008,
pp. 225-234.

L. Shen, X. Peng, and W. Zhao, “A comprehensive
feature-oriented traceability model for software product line
development,” in Proceedings of the 2009 Australian Software
Engineering Conference, ser. ASWEC *09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 210-219. [Online].
Available: http://dx.doi.org/10.1109/ASWEC.2009.27

M. Riebisch and R. Brcina, “Optimizing design for variability
using traceability links,” in Engineering of Computer Based
Systems, 2008. ECBS 2008. 15th Annual IEEE International
Conference and Workshop on the, April 2008, pp. 235 —244.

C. Togay, “Systematic component oriented development with
axiomatic design,” Dissertation, Middle East Technical Uni-
versity, July 2008.

C. Togay, A. H. Dogru, and J. U. Tanik,
“Systematic component-oriented development with ax-
iomatic design,” J. Syst. Softw., vol. 81, pp.
1803-1815, November 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1412750.1412833

K. Lee, K. C. Kang, W. Chae, and B. W. Choi,
“Featured-based approach to object-oriented engineering
of applications for reuse,” Softw. Pract. Exper,
vol. 30, pp. 1025-1046, July 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=350554.350569

(11]

[12]

(13]

(14]

[15]

(16]

(171

(18]

(19]

[20]

(21]

N. P. Suh, Axiomatic Design: Advances and Applications
(The Oxford Series on Advanced Manufacturing). Oxford
University Press, May 2001.

M. Bali, Drools JBoss Rules 5.0 Developer’s Guide. Packt
Publishing, 2009.

K. Czarnecki and C. H. Kim, “Cardinality-Based Feature
Modeling and Constraints: A Progress Report,” 2005.

J. White, D. Benavides, D. C. Schmidt, P. Trinidad,
B. Dougherty, and A. Ruiz-Cortes, “Automated diagnosis
of feature model configurations,” J. Syst. Softw.,
vol. 83, pp. 1094-1107, July 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.js5.2010.02.017

G. Ying, Z. Xiao-yan, W. Jun, and Y. Meihong, “Domain
service acquisition and domain modeling based on feature
model,” in Computational Science and Engineering (CSE),
2011 IEEE 14th International Conference on, August 2011,
pp. 26 -33.

T. Thum, D. Batory, and C. Kastner, “Reasoning about
edits to feature models,” in Proceedings of the 3lst
International Conference on Software Engineering, ser.
ICSE °09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 254-264. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070526

X. Peng, W. Zhao, Y. Xue, and Y. Wu, “Ontology-
Based Feature Modeling and Application-Oriented
Tailoring,” 2006, pp. 87-100. [Online]. Available:
http://dx.doi.org/10.1007/11763864_7

C. Xin, M. Huadong, and W. G. Wang, “Feature-ontology
based semantic specification model for simulation compo-
nent,” in System Simulation and Scientific Computing, 2008.
ICSC 2008. Asia Simulation Conference - 7th International
Conference on, October 2008, pp. 1163 —1167.

D. Batory, “Feature models, grammars, and propositional
formulas.” Springer, 2005, pp. 7-20.

D. Benavides, P. Trinidad, and A. Ruiz-Corts, “Automated
reasoning on feature models,” in LNCS, Advanced Infor-
mation Systems Engineering: 17th International Conference,
CAISE 2005. Springer, 2005, p. 2005.

C. Togay, O. Aktunc, M. Tanik, and A. H. Dogru, “Mea-
surement of component congruity for composition based
on axiomatic design,” in The Ninth World Conference on
Integrated Design and Process Technology, 2006., June 2006.

552

