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Black deposits usually found at the surface of magnesite ore or limestone as well as red deposits
in quartz veins are named as natural manganese dendrites. According to their geometrical structures,
they may take variable fractal shapes. The characteristic origins of these morphologies have rarely
been studied by means of numerical analyses. Hence, digital images of magnesite ore are taken from
its surface with a scanner. These images are then converted to binary images in the form of 8 bits,
bitmap format. As a next step, the morphological description parameters of manganese dendrites are
computed by the way of scaling methods such as occupied fractions, fractal dimensions, divergent
ratios, and critical exponents of scaling. The fractal dimension and the scaling range are made de-
pendent on the fraction of the particles. Morphological description parameters can be determined
according to the geometrical evaluation of the natural manganese dendrites which are formed inde-
pendently from the process. The formation of manganese dendrites may also explain the stochastic
selected process in the nature. These results therefore may be useful to understand the deposits in
quartz vein parameters in geophysics.
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1. Introduction

Various morphologies may be found in nature which
carry the name as dense structures, elongated fin-
ger arrays, forests of trees, dendrites, and islands [1].
One such structure are manganese dendrites (MnDs)
that form at the surface of magnesite ore [2], rock
agates [1, 3], and limestones [4, 5]. MnDs tend to raise
much theoretical interest [3, 4]. Due to their common
occurrence, detailed knowledge of the genetic condi-
tions of the MnDs can be of great practical interest in
understanding geological environments. Nevertheless,
geologists tend to consider them as rather meaningless
structures in deciphering geological environments. The
reason of that may probably be due to the uncertainty
of their genesis and their formation mechanism [4, 6].

The formation mechanism and the structure of
MnDs are yet unknown and still under discussion. The
formation of MnDs can be explained as stochastic se-
lected process in nature. MnDs consist of manganese

oxide ( MnO2 and Mn2O3) and iron oxide ( Fe2O3).
They are usually named incorrectly as ‘pseudo-fossils’
that are formed as naturally occurring fissures along
fractures at the surface and/or interface of magnesite
ore or rocks that are filled by percolating mineral so-
lutions [1, 6]. They have a visible form in two dimen-
sions and are found in the joint surfaces in sedimentary
rocks. The size of individual MnDs ranges from about
0.5 cm to about 20 cm in length. A three-dimensional
form of dendrites develops in fissures in quartz and
form moss agate [7]. MnDs are often explained on
the basis of diffusion-limited aggregation (DLA) [8],
reaction-diffusion aggregation (RDA) [5], and experi-
mental studies [6]. For example, a previous study at the
surface of magnesite ore revealed the presence of sev-
eral morphologies that vary from dendrites to compact
morphologies [2]. They were determined as seven dif-
ferent groups due to the geometrical structures and the
values of critical exponents of the correlation functions
and the fractal dimensions [2, 7]. In a different study,
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MnDs have been determined in nine different groups
using the results of the fractal and shapes analyses on
vein quartz in one dimension [7].

The fractal dimension is a parameter that quanti-
fies the roughness of the pattern surface. This value
can be used to characterize the geometrical complexity
of bounded sub-patterns and pattern groups. Its value
does not take an integer value. The fractal dimension
for MnDs has been described in many works [1 – 7].
However, it has not been fully characterized in the
morphological structure of the patterns because the
visually distinct patterns may have similar values of
fractal dimension. Unfortunately, there are very few
studies regarding the scaling critical exponents for the
macro internal structures and their characterization of
the perimeter–area relation in the literature for MnDs.
Moreover, scaling properties that describe the struc-
tures of MnDs into morphologies can be studied quan-
titatively using power-law treatments.

Scaling and self-similarity are imported concepts in
modern statistical physics. They are determined espe-
cially in morphological phase transitions for both natu-
ral and experimental patterns. Scaling is generally de-
scribed by a simple power law consisting of exponents,
irrespective of experimental and natural details such as
the formation condition of patterns and specific exper-

Fig. 1. Typical image of natural MnDs formed on magnesite
ore. It has an interface which MnDs form from the interface
toward the surface [2].

imental systems [9]. The natural formation pattern for
the same surface, which is a kind of phase transition,
exhibit scaling and self-similar properties insensitive
to formation details. This is one reason why scaling
treatments are chosen to analyze both the experimental
and natural results [9, 10].

Scaling method and fractal geometry are also deter-
mined as useful concepts for the analyses of complex
and irregular structures. Both concepts are based on the
image analysis methods which involve forming a grid
surface in square lattices of a given image with pat-
terns. For that purpose, the fractal dimensions, the oc-
cupied fractions, the perimeter–area relationships, and
the scaling exponents along joint planes for all islands
that show MnDs patterns at the surfaces of the mag-
nesite ore have been determined. The divergent ratios
and the characteristic lengths are also computed. Our
results can be useful to compare similar experimental
finding such as nickel–phosphorus and MnDs patterns
on vein quartz in one dimension.

2. Scaling Method

First of all, the surface of the magnesite ore show-
ing MnDs patterns is scanned by a scanner (Epson Sty-
lus DX485). A typical image of such MnDs is shown
in Figure 1. The MnDs pattern morphologies, which
have changed from dendrites to compact structures, are
distributed randomly at the surface of the magnesite
ore. With the high contrast, the black dendrites can
be clearly differentiated from the white vein magne-
site ore in the images. From the sample, four different
regions are selected according to visible morphologi-
cal structure. They are shown in Figure 2. These are
labeled as MnDs-A, MnDs-B, MnDs-C, and MnDs-D.
There are compact patterns in MnDs-A, semi compact
and dendrites in MnDs-B, dendrites patterns in MnDs-
C, and interface pattern in MnDs-D. These images
were transferred to a computer for analysis. In order to
differentiate these samples, they are filtered by Gaus-
sian blur σ = 2 and then converted in the BMP format.
Such an image containing 216 144 six-digit numbers
is considered as an intensity image type and represents
an 512-by-512 array of 8-bits integers that are linearly
scaled to produce a white and black colour map.

3. Results and Discussion

Numeric computations are performed on a finite
square lattice of L = 512 pixels by the scaling method.
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Fig. 2. Square-selection scanning images of the natural
MnDs. The dark regions are MnDs and bright regions are
magnesite ore.
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Fig. 3. Occupied fraction φ(N,L) as a function of the fractal
dimension D for MnDs patterns.

The length of square MnDs particles is chosen to be
the unit of length. The occupied fraction φ(N,L) of the
particle flux of the magnesite ore surface is given as

φ(N,L) = NL−d , (1)

where N is the total number of particles, and d is
the Euclidian dimension. The numbers of particles N
are computed as 41 993, 42 385, 55 111, and 93 690
and the occupied fractions φ(N,L) are computed as
0.160, 0.162, 0.210, and 0.357 for the MnDs patterns
in d = 2, respectively. There are several different pat-
terns in the images: 402 in MnDs-A, 274 in MnDs-B,
107 in MnDs-C, and 96 in MnDs-D at the surface of
the magnesite ore.

The fractal dimensions are an index of scale de-
pendent on the MnDs surface and may be described
with different concepts. They are defined as the sim-
ilarity dimension for the self-similarity patterns, the
mass dimension for the constant density Euclidean pat-
terns, the Haussdorff–Besicovitch dimension for the
bounded sets and subsets, and capacity dimension of
the pattern and/or pattern groups [1, 3, 4]. The simi-
larity dimension is meaningful only for exactly self-
similar patterns [11, 12]. However, some MnDs pat-
terns are both self-similarity and non-self-similar pat-
terns which can be described as a part of percolation
patterns [1, 3, 4].

Brought to you by | Balikesir Üniversitesi
Authenticated

Download Date | 12/4/19 7:58 AM



408 M. Bayirli and T. Ozbey ·Morphological Description Parameters for Manganese Deposits

100 101 102

101

102

103

104

105

(P
er
im
et
er
)^
(1
/D
)

(Area)^(1/2)

Fig. 4. Perimeter–area relation for MnDs-A. The value of the
strain line slope is about 2.092.
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Fig. 5. Typical log–log plot of h vs. N(h). The slopes of the
straight lines fitted to data change yield scaling exponents
from 2.092 to 1.825.

The MnDs that grow randomly and take various
geometrical structures have too many subsets. More-
over, the islands in the subsets are found to be sepa-
rated from each other with various distances. In gen-
eral, MnDs patterns are often replaced by box dimen-
sion or capacity at the surface of the magnesite ore.
A δ -cover of A is a summation of patterns of diameters

which contains any bounded union of sub-MnDs pat-
tern area A at the square lattice surface and a minimum
linear dimension δ > 0. Furthermore, each sub-pattern
of diameter δ ingrained in the grid surface on the off-
square lattice is composed of a combination of parti-
cles of the MnDs. When the limit exists, we donate by
Nδ (A) the smallest number of patterns in a δ -cover of
A and describe the box dimension D of A as

D = lim
δ→0

logNδ (A)
log(1/δ )

. (2)

The box dimension can be thought for measuring how
well a set can be covered with small boxes of equal
size because the limit remains unchanged if Nδ (A)
is replaced by the smallest number of E-dimensional
square areas of the sides δ needed to cover A, or
even the number of areas of a δ lattice that inter-
sect A [11, 12]. The fractal dimensions for them are
estimated using the box-counting method [1, 3]. In
this method, N(A) is the number of boxes or squares
needed to cover entire patterns on the magnesite ore,
and δ is the size of the boxes. The estimation of fractal
dimension D involves step-by-step iteration. δ is in-
creased and N(A) is computed for each step. The steps
for the box size used in this study follow δ = 20, 21,
22, . . . pixels. A plot of logN(A) versus logδ is made
for the pattern data sets. This relation is linear, and the
absolute value of the slope corresponds to the fractal
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Fig. 6. Typical log–log plot of N(h) vs. T (h). The slopes of
the straight lines fitted to data changes range from 0.304 to
0.278.

Brought to you by | Balikesir Üniversitesi
Authenticated

Download Date | 12/4/19 7:58 AM



M. Bayirli and T. Ozbey ·Morphological Description Parameters for Manganese Deposits 409

Table 1. Result values of the occupied fraction, fractal dimension, perimeter-area exponents, and critical exponents α and β

of the scaling.

Occupied Fraction Box-Counting SIM Divergent Ratio α β

(φ ) (D) (γ) (ρD)
MnDs-A 0.160 1.626±0.013 1.614±0.012 2.092±0.016 2.092±0.065 0.304±0.007
MnDs-B 0.161 1.676±0.018 1.581±0.010 2.151±0.014 2.147±0.073 0.323±0.005
MnDs-C 0.210 1.732±0.067 1.465±0.015 1.228±0.012 2.136±0.068 0.317±0.005
MnDs-D 0.350 1.740±0.045 1.513±0.006 1.317±0.005 1.825±0.050 0.278±0.005

dimension D of the pattern [2 – 4, 7, 10]. They have
a narrow range from 1.626 to 1.740, and the average
value is 1.75. The values of fractal dimension are re-
ported as 1.78 on limestone [5] and 1.51 for MnDs on
quartz in one dimension [7]. It is also reported as 1.69
between two laminae of fine-grained calcarenite from
a flysh facies [6]. Dendrite patterns with broad and
short branches have generally bigger values of frac-
tal dimension compared to those with long and thin
branches [4, 6].

To determine the influence of the occupied fraction
on the fractal dimension, we plotted the occupied frac-
tion φ(N,L) of the samples as a function of the frac-
tal dimension D. Figure 3 shows the occupied fraction
φ(N,L) as a function of the fractal dimension D.

The relationship between φ(N,L) and D can be
computed by numerical analyses. The initial parameter
estimate function φ(D) using the nonlinear exponen-
tial decay regression method is taken in variant form
(as seen in (3)) given by

φ = φ0 +Ae(−D/t1) , (3)

where A and t1 are the correlation parameters. These
parameters are obtained from φ(N,L) and D by search-
ing for the fit on all regions of aggregations. The corre-
lation parameters are computed as φ0 = 0.151±0.030,
A = 1.182E− 64± 1.462E− 62, and t1 = −0.012±
0.010. The coefficient r2 of nonlinear regression is
computed as 0.92517.

In nature, each pattern group with standard planar
shapes can be geometrically similar. Nevertheless, they
can be found in different sizes. Yet they may have
a characteristic length and critical exponent. The crit-
ical exponent of every MnDs is computed using the
slit-island method (SIM) which was proposed by Man-
delbrot et al. [11]. They applied the method first to a set
of ‘islands’ obtained by the two-dimensional cuts of
broken metal surfaces. SIM involves selecting surface
patterns with a plane at a given height. Thus, different

island-like areas at each surface appear for both the dif-
ferent height values and the critical exponents.

Analyses of perimeter–area data from patterns on
the magnesite ore confirm the existence of a perimeter–
area power-law relationship,

A(δ ) = C1P(δ )γ , (4)

where C1 is the intercept on the A-axes, δ is the yard-
stick value, and γ is the slope of the logA− logP plots
as the critical exponent [13]. The constant C1 which ap-
pears in (4) is estimated by performing a linear regres-
sion on the log perimeter–log area data. This is shown
in Figure 4. From this analysis, slopes that range from
1.614 to 1.465 for the patterns of the MnDs groups are
computed.

The divergent ratio ρD for the fractal patterns in two
dimensions is in correlation with the perimeter and the
square root of enclosed area for the patterns. It is inde-
pendent of the size of the particles for the patterns of
the same geometrical structure. The values of the di-
vergent ratio ρD are 3.44 for circles, 4.00 for squares,
and 4.56 for triangles, respectively [11, 13]. Its val-
ues increase with the complexity and angularity of the
pattern of the outline. Nevertheless, the perimeter of
patterns depends on the scale of measurement. Man-
delbrot also proposed for the fractal curves using the
length of yardstick δ the divergent ratio

ρD = C2P(δ )1/DA(δ )−(1/2) , (5)

where C2, P, and A are a constant, the perimeter, and
the area, respectively. δ is a yardstick value and it is
taken as one pixel. The divergent ratio is independent
of the size of fractal patterns but depends on the yard-
stick according to the scaling parameters. The diver-
gent ratio ranges from 2.092 to 1.228 for the four dif-
ferent samples. The relationship between the shape of
the dendrite and the divergent ratio compared to the
divergent ratio for the MnDs patterns is shown more
clearly. A simple dendrite on magnesite ore with broad
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branches has the bigger fractal divergent ratio. The val-
ues decrease when the branch thickness slim for the
MnDs patterns. The values of the divergent ratio ρD are
reported for the manganese dendrites on vein quartz
which have different geometrical structures ranging
from 0.840 to 0.830 in one dimension [7].

Moreover, the critical exponents of the scaling [14,
15] are also examined in the four selected regions pos-
sessing various morphologies in two dimensions at the
surface of the magnesite ore. All square-sectional im-
ages were digitized in linear dimensions with a reso-
lution of 512× 512 pixels and were transformed into
8 bits binary images. The root-mean-square (RMS)
thickness and the number of pixels that lie within
a thickness of h is defined by

T (h) =
〈
xi−〈xi〉

〉 1
2 , (6)

where 〈. . .〉 indicates an average over the number of
pixels of h, and xi is the thickness of pixel i. In addi-
tion, the values h can be taken as 1, 2,. . . nxi, and n is
an integer. Equation (6) represents the number of accu-
mulative pixels that lie under a thickness of h changing
in a range from 0 to 512 in units of pixels,

N(h) = ∑
x≤h

ρ(xi) , (7)

where ρ(xi) is the particle density and it is defined as

ρ(xi) =

{
1 if a dark pixel exists at xi ,

0 if a bright pixel exists at xi .
(8)

In (8), ρ(xi) is defined as 0 if a bright pixel exits at xi,
1 if a dark pixel exits at xi. The relationship between
N(h) and h is defined by

N(h) ∝ h−α , (9)

and the relationship between T (h) and h is defined by

T (h) ∝ N(h)β , (10)

where α and β are the critical exponents of the scaling
for the morphological structures. The values of the crit-
ical exponents α and β in Figure 5 and 6 are estimated
to 2.136 and 0.317, respectively, using the linear re-
gression method, which yields αβ = 0.635 for the four
different pattern groups. As the exponent α decreases

with the occupied fraction, reversely the exponent β

increases. As particles in the pattern groups accumu-
late in pixels, this consequently leads to a T (h) ∝ h
term. These results and their 95% confidence limits for
the four images are also summarized in Table 1.

Figure 5 shows that when xi→ h increases, the N(xi)
value decreases for the MnDs patterns. It also implies
that the distribution of the accumulated pixels, which
are particles, is determined only by h. Their RMS val-
ues T (h) increase as power of N(h) as in the case
of the DLA model for computer simulation growth at
a two-dimensional surface on the basis of parameters
α = 1.70 and β = 0.41. They have been reported ac-
cording to the occupied fraction and the number of the
pattern sites [14]. The critical exponents α and β are
reported to be 1.15 and 0.91, respectively, by Saito and
Okudaira for the macro internal structure of porous
nickel–phosphorus films using the electro-deposition
method [15]. Our results are greater than Saito’s and
Okudaira’s results.

4. Conclusion

In this paper, the morphological description param-
eters are computed by using the scaling method for the
natural manganese dendrites. According to their geo-
metrical structures, they may have different sizes. They
may be formed along joint surfaces at the magnesite
ore, limestones or in a quartz vein. The island groups
of the patterns can be characterized computing the oc-
cupied fraction, the fractal geometry, and the scaling
exponents for the pattern groups on a square lattice
using the scaling method. The fractal dimensions of
the MnDs are estimated using box-counting algorithm
and SIM algorithm change. The first method produced
a result ranging from 1.626 to 1.740, whereas the sec-
ond method produced a result ranging from 1.614 to
1.465. Our results confirm that the structural character-
istics of MnDs form DLA processes and determine the
multi-dimensionality of the space in which the growth
process occurs. They also confirm that structural char-
acteristics of MnDs are insensitive to features such as
surface curvatures.

Meanwhile, these results determine the morpholog-
ical transitions of the natural mineral dendrites inde-
pendent of the formation process. The growth forma-
tion of MnDs may also explain the stochastic selected
processes such as DLA. These results can prove to be
useful for geophysics and the earth sciences.
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