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We prove direct simultaneous and converse approximation theorems by trigonometric
polynomials for functions f and (a,1)-derivatives of f in weighted Lebesque spaces with
variable exponent. Bibliography: 11 titles.

1 Introduction

Let T := [0, 27], and let & (T') be the class of Lebesgue measurable functions p (z) : T — (1, 00)
such that

1 < pi (T) :=essinfp (x) < p* :=esssupp (z) < 0.
zeT zeT

A function w : T — [0,00] is called a weight on T if it is a 27-periodic, a.e. positive, and

Lebesgue measurable function. We define the weighted variable exponent Lebesgue space Lf,(')

as the collection of 2m-periodic Lebesgue measurable functions f : T' — R with the finite norm
/11y = inf { >0 :/y(f (2) fo)w (@)@ dz < 1% |
T

where p € & (T'). The space L‘ggr') is a Banach space.
For given p € & (T) the class of weights w satisfying the condition [1]

p'('),l < C |Q‘

||WXQ||p(.)71 HW_IXQ

* To whom the correspondence should be addressed.

Translated from Problems in Mathematical Analysis 65, May, 2012, pp. 3-12.
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for all balls @ in T is denoted by A, (T). Here, p’ (x) := p(x)/(p(z) — 1) is the conjugate
exponent of p (z). The variable exponent p (x) is said to be log-Hdélder continuous on T if there
exists a constant ¢ > 0 such that

c
log (e + 1/ |z1 — x2])

Ip (z1) — p(22)| < Vay,raeT. (1.1)

We denote by 2'°¢ (T') the class of exponents p € & (T) such that 1/p :T — [0, 1] is log-Hélder
continuous on T'.

If p € 28 (T) and f € Lﬁ('), then, as was proved in [1], the Hardy—Littlewood maximal
function .# is bounded in LE if and only if w € A,y (T).
Let f € Lf,(’), and let
w+h/2
[ (x / ft rzeT,

z—h/2

be the Steklov mean operator. If p € £2!°8 (T') and w € Ap(y (T), then <, is bounded in 7R
For z,h € T and 0 < r we define

oA @)= (=) 1@ =3 r T S

where f € Lg('), I' is the Gamma function, and I is the identity operator.
If pe 2% (T), w e Apy(T), and f € Lf,('), then

lon ey w < el ey - (1.2)

For 0 < r we can define the fractional moduli of smoothness for p € 2'°¢ (T), w € Apy (T),
and f € Lf,(') by the formula

[]

[Ta-a)ol"s

=1

Qr (f,0)p( ) = sup

0<h;,t<d

where
Qo (f, 5)1)(-),0.) = Hpr()
Q- (f,6),0y, = sup |lo} Vs 0<r<l,
(f )p( ), 0<t£6 | tpr( )y
[r] denotes the integer part of the nonnegative real number r and {r} :=r — [r].
In this case, for p € 28 (T), w € Apy (T), and f € L") we have

Qr (f,0) ()0 S N llpey s

where the constant ¢ > 0 depends only on r and p.

Remark 1.1. The modulus of smoothness Q, (f,0) p()w T E R has the following properties
for p € P8 (T), w € Ay (T), and f € A
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(i) Q4 (f,0)p() . 18 @ nonnegative and nondecreasing function of 6 > 0,
(11) QT‘ (fl + f27 ')p(-),w < QT (f17 ')p(-),w + QT (f?v ')p(-),oﬁ
(iii) 613&97« (f,0)p(yw =0

If pe 2298 (T) and w € Ap.

metric polynomials is dense [2] in et

y (T), then wP@) € L' (T). This implies that the set of trigono-
). This allows us to consider approximation problems in
. Approximation by trigonometric polynomials in Lﬁ(') was considered in [3]-[8] In [9, 10],
on the basis of the transformed Fourier series, the so-called lambda derivatives were introduced
and inequalities are obtained in a refined form like the Besov and Timan inequalities.

On the other hand, if p € 27'°8 (T') and w € Ay, then Y c (T). For given f € Y
we introduce the Fourier series and the conjugate Fourier series of f by the formulas

f(z) %T(f) + 3 (ar (f) cos ka + by (f) sin k) (1.3)
k=1

and

F(@) = (ar (f)sinka — by (f) cos k).

k=1
We say that a function f € Lg('), pe P (T),we Ay, (T), has a (a,1p)-derivative FL if for
a given sequence ¥ (k) ,k =1,2,... and a number « € R the series
> 1 o . am
;W(a“f)cosk(x—i-%)+bk(f)smk:<$+%)> (1.4)

is the Fourier series of the function fg. Taking ¢ (k) = k™%, k=1,2,..., « € RT, we have the
fractional derivative f(®) of f in the sense of Weyl. Taking ¥ (k) = k*In"Pk, k = 1,2,...,
o, € Rt, we have the power logarithmic-fractional derivative f(@# of f.

Let 90t be the set of functions 1 (v) that are convex downwards for any v > 1 and satisfy the
condition lim,_,c ¥ (v) = 0.

We associate every function ) € 90 with a pair of functions 7 (t) = ¥~ (¢ (¢) /2) and
p(t)=t/(n(t)—1).

We set

My :={eM:0<u(t)<K}.

We define

N _ — )
En (f)p(_)’w = Tlélgn ||f THp(~),oJ s n — 0, 1, 2, ey f € LZ y

where 7, is the class of trigonometric polynomials of degree not greater than n.
Theorem 1.1. Let p € 28 (T), w™P € Alp(ypoy (T) for some po € (1,p« (T)), « € R and

f féf) € Lg('). If ¥ (k), (k € N) is an arbitrary nonincreasing sequence of nonnegative numbers
such that ¢ (k) — 0 as k — oo, then for every n = 0,1,2,3,... there exists a constant ¢ > 0
independent of n such that

B (Np(y < 0 (n+1) En (1)

p()w .
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Corollary 1.1. Under the assumptions of Theorem 1.1,

B (pyr < (n+1) | £

p()w

with a constant ¢ > 0 independent of n.

Using Theorem 1.1 and Theorem 1.4 in [4], we have the following Jackson type direct theorem.

Theorem 1.2. Suppose that p € 28 (T), w0 € Ap(y/poy (T) for some po € (1,p« (T')),

a € R and f, féf) € LZ('). If ¥ (k), (k € N) is an arbitrary nonincreasing sequence of nonnegative
numbers such that 1 (k) — 0 as k — oo, then for every n = 1,2,3,... there exists a constant
¢ > 0 independent of n such that

1
En (fy(y St (n+1)Q <f:f, 5) :
p(')vw

Theorem 1.3. If p € 298 (T), w™P ¢ Apypoy (T) for some po € (1,p«(T)), o € R,
v € My, and

o0

Z (v (v) "' B, (F)p(yw < 0

v=1

then féﬁ’ € Lf,(') and

E, (f;f’)p(,)’w <c ((w () En (Npyw+ D, @) ' E, (f)p(_)’w> ,

v=n+1
where the constant ¢ > 0 depends only on a and p.

Corollary 1.2. Under the assumptions of Theorem 1.3, if r € (0,00) and

[e.e]

Z% (U))il E, (f)p(.),w < 00,

v=1

there exist constants c,C > 0 depending only on v, r, and p such that

0, <fzf,3) , < %ZVH W) By (Hpyw+C Y @) By (f)pyw-

n
v=0 v=n+1

Theorem 1.4. Suppose that p € '8 (T), w0 € Ap(y/poy (T') for some po € (1,p« (T')),

a € [0,00), and f, 1o e Y. If ¥ (k), (k€ N) is an arbitrary nonincreasing sequence of
nonnegative numbers such that ¥ (k) — 0 as k — oo, then there exists T € I, n =1,2,3,...
and a constant ¢ > 0 depending only on o and p such that

v Y
HfOé Ta Hp('),w g CEn (fa)p('%w .

In the particular case ¥ (k) = k~*In"Pk, k =1,2,..., o, 8 € R, we have the following new
results for power logarithmic-fractional derivatives.
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Theorem 1.5. If p € 28 (T), w™ ¢ Ay pey (T) for some po € (1,p« (T)), ., € R,

and f, f(@B) ¢ Lf}('), then for every n = 1,2,3,... there exists a constant ¢ > 0 independent of
n such that

E, (f)p(%w < ;En (f(oz,ﬁ))

ne1In® (n 4 1) pl)w”

Corollary 1.3. Under the assumptions of Theorem 1.5,

En(f)p(-),w < Hf (@) H

neln? (n +1) p()w

with a constant ¢ > 0 independent of n.

Theorem 1.6. If p € 28 (T), w™P ¢ A(p(,)/po)/ (T') for some py € (1,p« (T)), o, 5 € R,
and f, f(@B) ¢ Lf,('), then for every n = 1,2,3,... there exists a constant ¢ > 0 independent of

n such that .
En (f)p) S mﬂ <f<aﬂ>, ﬁ)p(.w .
Theorem 1.7. Ifp € 298 (T), w™P € Ay /pey (T) for some po € (1,p« (T)), o € R, and
iuafl In” vE, (f)p(yw <0
then f(@B) ¢ Lf,(’) and

En(f(a’ﬁ))p(.),w <ec (n"‘ 08 nE, (Fpyw + Z vl uE, (f)p(_w) ;

v=n+1

where the constant ¢ > 0 depends only on «a, 3, and p.

Corollary 1.4. Under the assumptions of Theorem 1.7, if r € (0,00) and

Zua 'mPvE, (Fpyw <

there exist constants c¢,C > 0 depending only on «,3, r, and p such that

« 1 c & r+oa— S o
0, <f( ”B)’ﬁ> 0 <D VTV, ()0 +C Y v I VB () -

p(-),w v=1 v=n+1

Theorem 1.8. Ifp € 2% (T), w0 € Ay pey (T) for some pg € (1,p. (T')), o € [0,00),

and f, f(@B) Lff,('), then there exists T € J,, n = 1,2,3,... and a constant ¢ > 0 depending
only on o and p such that

1792 =T, < B (5

Theorem 1.7 and Corollary 1.4 were proved in LP (w =1, constant p € (1,00)) in [11].
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2 Auxiliary Results

We define the nth partial sum of (1.3)

_ aO(f).+Z(ak(f)coskx+bk(f)sinkaz), n=20,1,2,....
k=1

Lemma 2.1. [7] If p € 2'°8(T), w™P ¢ Ay,
fe Lﬁ('), then there are constants ¢, C > 0 such that

Hﬂ’p(.)w < ellfllpe).e (2.1)

o)/ (T') for some py € (1,p«(T)), and

and
”STL ('7f)”p(-),w < CHpr(),w’ n= 1’27"' . (22>

Remark 2.1. [4] Under the assumptions of Lemma 2.1, there exists a constant ¢ > 0 such
that

1 =50 (3 Dllpy < B (Fy(yw = En (ﬂp(a,w‘

Definition 2.1. Suppose that p € 28 (T'), w0 € Ap()/poy (T) for some po € (1, p. (T))
Y (k), (k € N) is an arbitrary sequence, and o € R. We write («, ) € B if

|@g| | <e@m) T Tl

p('),UJ

for any T,, € 7, where the constant ¢ is independent of n.

Proposition 2.1. Suppose thatp € P8 (T'), w™P € A(p(.)/po)/ (T) for somepg € (1,p« (T)),
and 1 satisfies

2q+1
sup > [ ( (K + 1)) 7" = (4 ()71 < CAy (2:3)
9 k=24
where
KN, 1<k <n,
(n (1)) = {W )
0, k>n,
and
Ao = x| (o () | = o () (2.4)
Then

P
H (Tn)a Hp(-),w < C)\nHTan(~),w’

where the constant ¢ depends only on i and p.

Proof. We can write

(18 = 32 b (o conk (o 97 b s s+ 27)
= 2 %Ak <Tn,x + %) = ; % {cos O;—WAIg (T, z) — sin — Ay, (Tn’ x)}
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We define the multipliers

(¢ (k‘))_1 cos g, 1<k<mn,
M =

0, k>n, k=0,
@) TsingE, 1<k <n,
Mk =

O, k>n7 k:O,

and operators
" 1 aT
ATn = _A Tn7 ’
(ATo) (0) = 35 5 <05 5 A (T
—— 1 am ~
AT, = in — Ay | Th,
(1) o1 3= g o (7

Therefore,

Using (2.3) and (2.4) we get
SUP [ft5] < Ans - $UD [ < Ans

29+1

sup » [ (k+1) — p (k)| < Oy,
9 p—2q

2q+1

sup Y [ (k+1) — i (k)] < Chn.
9 p=2q

Applying the Marcinkiewicz multiplier theorem for weighted variable exponent Lebesgue spaces
[7], we find

1Tl = IAT) = AT, < (ATl + [ AT

p()w

S CA"( H ;Ak(Tn’x)Hp(.),w * H ;Ak (fT“x)Hp(-),w)'

By the boundedness (2.1) of the conjugate operator, we obtain the desired inequality

[T < O

;Ak(Tn’x)Hp(.),w = O[Tl o -

Proposition 2.1 yields the following corollary which, in fact, is a generalized Bernstein in-
equality.

Corollary 2.1. If p € 298 (T), w™™ ¢ Apypoy (T) for some py € (1,p (T)), a € R,
Y (k), (k€ N) is an arbitrary nonincreasing sequence of nonnegative numbers, and T,, € Ty,
then (a,v) € B.

The proof follows from A, = (¢ (n))*.
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3 Proofs
Proof of Theorem 1.1. We set
Ag (z, f) := ay cos kx + by sin kx.
Since the set of trigonometric polynomials is dense in L‘f,(’), for given f € Lf,(') we have
En (f)pyw — 0 asn— oo

From the first inequality in Remark 2.1 we have

z) = Ap(z,f)
k=0

in the norm |||,y - For k =1,2,3,... we know that
A (z, f)—akcosk<m+%—%)+bksmk(:v—i—a—7r—%)
2 2
A .o
—Ak<m+2k f)6087+14k<9€+2k f>51n7
and

Ay (x,fgf) - wzk)A’“ (:c+ 3—2]‘) .

Therefore,
D k(e f) = Ao o) +eos S (e+ 5 1) i) A (+ 55 7)

Ag (z, f)—l—cos—zw ) Ag(z, f¢)—|—sm—2w )Ap(z, (H)L).

Hence
am

FO) = Sals f) = cos T2 7 (k)AL £) +sin T Y (k) A ().

> kARG L) = D RISk £2) = FE)) = (Skea (s ) = F2())]

k=n+1
and
Do RAG (DL = Y @k) =k + 1))k (HE) = (NHEC)
k=n+1 k=n+1
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we obtain

£ () = Snles Fllprwo < D (k) =k + D)[Sk( £8) = F& Ol

k=n+1

+ o+ VIS f2) = FEOllpey e + Z +1)

k=n+1

< 154+ (FE) = (DL Iy + 6+ DISHC (L) = (DEO N
<c[ S (k) = bk + ) Er(fL)py + Y0+ 1) n<f;€>p(.),w]

k=n+1

+c

Y @) =k + D) ER((N))p)w + n+ 1)En((f)éf)p(.),w] :

k=n+1

Consequently, from the equivalence in Remark 2.1 we have

1£() = Sl Ollpe)w

el D @) = ¢k + 1)+ v+ 1) [ {E(f)p) 0 + En(f)p) w0}
k=n+1
<cEn<fzf>p<.>,w[ Wk —k+ 1))+ +1)| <cbln+ DE(fD)pw O
k=n+1

Proof of Theorem 1.3. Let T,, be the best approximating polynomial for f € Lf,('). We
set no =mn,ny:=[nn)]+1,...,nk:=[n(nk—1)] +1,.... In this case, the series

converges to f in the Lf,(')—norm. We consider the series

(T (DL + 3" (T () = Ty, ()Y (3.1)

B
Il
—

Applying the generalized Bernstein inequality (Corollary 2.1) to the difference uy, () := T, () —
Tny, (+), we get

HukaCLw <ZC(H1%k _'prCLw +'H7%k71__fHPQLW)
(ng) ¥ (ng)
CEnk_l-l-l(f)p(-),w (w(nk))il

()8 lp(y e <

N

Hence

5w,

pi),w

<ec <En+1 (f)p( 7w (n) Ty ZEnk+l p( ) (¥ (”k))1> .
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z
:1+7_Z:1+M(¢az)<07

T—7(7) ™ (t) T ¢
-t SnmB -0 0 ”n<t>—t)
< (L4 p(t) e <

n
Then ¢ (1) =2 ¢ (n(t)) > (1) /2 for any 7 € [t,n(t)],7 > n(1). Without loss of generality one
can assume that 1 (t) — ¢ > 1. In this case, we get

Enj+1 (f ! Eyiq f) 1
o <02 Tom wm -
<o "kz_:l Byt (F)p) v v-nw) nkz_:l Eypa (f)p(.),w'

v (v) (=) (1) — -1

V=Nk—1

Therefore,

D w8 lpey e < C<En+l(f)p(-),w(¢(n))_1 + Y Ev(f)p(-),w(W(v))_l)-
k=1

v=n+1

The right-hand side of the last inequality converges and, consequently, the series (3.1) converges
in the norm to some function S (-) from LY Let a,(cn) = a, (T5,) and b,(cn) = b, (Ty), k =
0,1,2,..., be coefficients of polynomials T},. The corresponding coefficients a,(fn), ﬂ,gn) of the
polynomials (Tn)ﬁ have the form

0411(C ) = —{cosa—alg)—i-smﬁbé )},

(k) 2 2
) _ 1 am (n) (n)
By, —w 0 {cos 5 by, sin — }

Since (T, ())g — S (-) as n — oo, we have oz,(cn) — ay (S) and B,(Cn) — b (S) as n — oo for

k=0,1,2,.... Since a,(gn) — ag (f) and ,Blgn) — b (f) asn — oo for k=0,1,2,..., we have
o () = s {eos ol +sin Tl
1

bp (S) = —— {cos 71)( ") _ sin %a,&n)} .

We conclude that the Fourier series of S has the form (1.4). This means that the function f has
a (¥, o)-derivative fY of class LY and

= (T + D (k) (3.2)

k=1
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in the L") -norm. Therefore, from (3.2) it follows that

En(f:yp)p(),w < C((w(n))_lEn(f)p(%w + Z (Vw(v))_lEv(f)p(),w) . U

v=n+1

Proof of Corollary 1.2. Since [4]

1 C
QT y
(f ”);;(.),w n

using Theorem 1.3, we have

1 C U r—
Qr(éfaﬁ) . <FZ 1E (fa )w\ {ZV 1 U Ev(f)p(.),w
p(-),w

v=1

N
%
S
L
L
&
N
=
=
£

Using the equality

we get

o (fg’%> % ST W) B Dy +C X (@) E (e O
pi),w —

Proof of Theorem 1.4. We set

forn=0,1,2,.... Since Wy (-, f) = (Wn(~,f))1fé, we have

18 () = (S )&l <ML C) = Waly D lpe) 0 + 10Snl WalHDE = (Sus )& lp(y
N Wal 1)E = SuC WalPDE o) w = I+ I + I,

In this case, form the boundedness of S,, in Lg(') we obtain the boundedness of W,, in Lf)(’) and

< ) - Sn(’ fc%)”p(),w + ||Sn(7 f&b) - Wn('a fg)Hp(-),w
< CEn(fcqyp)pC),w + HWn(a Sn(f;f)) - fc%)”pﬂ),w < CEn(fcqyp)pC),w
From Lemma 2.1 we get

I < (¥ (n) " HISn (s Wa(£)) = Sn(s H)llpe) s
I3 < c(@ () " Wals £) = Sl War(F) lp(ew < (@(0) " En(Wa(£))p(o) -

Now, we have
180 (Wi () = Sn(s Pllpeyw < 1S Walf) = Wa s Ollpeyw + 1Wa (5 f) = FOllpe)w
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HIFC) = Sn( Hllpeyw < En(Wnlf)pe)w T En(fpe)w + cEn(f)p()w-

Since En(Wa(f))p)w < CEn(f)p()w> We get

ch%() - (Sn(7 f)):ﬁ”p(),w < CEn(fé’b)p(.),w + C(lﬁ(n))ilEn(Wn(f))p()’w
+ CEn(f)p(-),w < CEn(fg})p(v),w + C(w(n))_lEn(f)p(),w'

Since En(f)p)w < cb(n + 1)En(f&p)p(,)’w in view of Theorem 1.1, we obtain

10.

11.

178 () = (S F)Ellpyw < CBalf)p() - O
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