
Chapter 12
A Fractional Order Dynamical Trajectory
Approach for Optimization Problem with HPM

Fırat Evirgen and Necati Özdemir

1 Introduction

Optimization theory is aimed to find out the optimal solution of problems which
are defined mathematically from a model that arise in wide range of scientific
and engineering disciplines. Many methods and algorithms have been developed
for this purpose since the late 1940s. The penalty function methods are classical
methods for solving nonlinear programming (NLP) problem by transforming it to
the unconstrained problem, see Luenberger [1] and Sun [2] for details. Furthermore,
dynamical trajectory approaches based on differential equations system are alterna-
tive methods for NLP problems. In this type of methods an optimization problem
is formulated as a system of ordinary differential equations (ODEs) so that the
equilibrium point of this system converges to the local minimum of the optimization
problem. The methods based on ODEs for solving optimization problems have been
first proposed by Arrow and Hurwicz [3] and then improved by Rosen [4], Fiacco
and Mccormick [5], and Yamashita [6]. Recently, Wang et al. [7], Jin et al. [8] and
Özdemir and Evirgen [9,10] have made studies in differential equation approach for
solving optimization problems.

In last decade, fractional calculus has drawn a wide attention from many
physicists and mathematicians, because of its interdisciplinary application and
physical meaning, e.g. [11–13]. Fractional calculus deals with the generalization of
differentiation and integration of noninteger order. Several analytical and numerical
methods have been proposed for solving fractional differential equations (FDEs).
Some commonly used techniques are summarized as follows. The variational itera-
tion method (VIM) was first introduced by He [14], and applied to FDEs [15]. The
Adomian decomposition method (ADM) [16, 17] is applied to various problems.
Also, the homotopy perturbation method (HPM) is an another successful analytical
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approximate technique, which provides a solution to linear and nonlinear problems,
see [18, 19]. The HPM yields a very rapid convergent series solution, and usually a
few iterations lead to very accurate approximation of the exact solution [18–23]. The
reason of this success is mainly based on combination of the traditional perturbation
method and homotopy techniques. The HPM is used to solve a wide range of differ-
ential equations in the literature. Abdulaziz et al. [24] used HPM for solving system
of FDEs. Momani and Odibat presented HPM for fractional order partial differential
equation [25] and fractional quadratic Riccati differential equation was described
in Odibat and Momani [26]. Baleanu et al. have solved linear and nonlinear
Schrodinger equations by HPM [27]. Chowdhury and Hashim [28] have employed
HPM for solving Klein Gordon equation. Furthermore, some techniques are adapted
to the HPM for getting the essential behavior of the differential equation system for
large time t, such as multistage and Padé approximants. The adaptation of HPM with
multistage strategy for numerical and analytical solution of a system of ODEs was
introduced by Hashim and Chowdhury [29]. Applications of multistage HPM for
solving chaotic systems and biochemical reaction model were illustrated in [30–32],
respectively.

This paper constructs a system of FDEs which is proposed to solve NLP problem
with equality constraints. In order to see the coincidence between the steady state
solution of the system of FDEs and the optimal solution of the NLP problem in a
long time t period, we used the multistage strategy.

The paper is organized as follows. In Sect. 2, the fundamentals of optimization
problem, fractional calculus and HPM are briefly reviewed. In Sect. 3, the multistage
HPM is adapted to the nonlinear system of FDEs for solving NLP problem.
In Sect. 4, the applicability and efficiency of multistage HPM is illustrated by
comparison among traditional HPM and fourth order Runge–Kutta (RK4) method
on some numerical examples. And finally some concluding remarks are given in
Sect. 5.

2 Preliminaries

2.1 Optimization Problem

Consider the NLP problem with equality constraints defined by

minimize f (x),
subject to x ∈ M

(12.1)

with
M = {x ∈ R

n |h(x) = 0} ,
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where f : Rn −→ R and h = (h1,h2, . . . ,hp)
T : Rn −→ R

p (p ≤ n). It is assumed
that the functions in problem are at least twice continuously differentiable, that a
solution exists, and which ∇h(x) has full rank. To obtain a solution of (12.1), the
penalty function method solves a sequence of unconstrained optimization problems.
A well-known penalty function for this problem is given by

F(x,μ) = f (x)+ μ
1
γ

p

∑
l=1

(hl(x))
γ , l = 1,2, . . . , p, (12.2)

where γ > 0 is constant and μ > 0 is an auxiliary penalty variable. The correspond-
ing unconstrained optimization problem of (12.1) is defined as follows:

min F(x,μ) subject to x ∈ R
n. (12.3)

Further information about NLP problem can be found in Luenberger [1] and Sun [2].

2.2 Fractional Calculus

Now we will give some definitions and properties of the fractional calculus [11–13].
We begin with the Riemann–Liouville definition of the fractional integral of order
α > 0, which is given as

Iα f (x) =
1

Γ (α)

x∫

0

(x− t)α−1 f (t)dt, x > 0,

where Γ (.) is the Gamma function.
Most commonly encountered fractional derivatives are Riemann–Liouville and

Caputo fractional derivative. The definitions of these two derivatives are given as:
Riemann–Liouville fractional derivative (RLFD)

Dα f (x) = Dm (
Im−α f (x)

)
=

1
Γ (m−α)

(
d
dt

)m x∫

0

(x− t)m−α−1 f (t)dt,

Caputo fractional derivative (CFD)

CDα f (x) = Im−α (Dm f (x)) =
1

Γ (m−α)

x∫

0

(x− t)m−α−1
(

d
dt

)m

f (t)dt,
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where m− 1 < α � m and m ∈ N. Note that Dm is the usual integer differential
operator of order m. Furthermore,

Iα Dα f (x) = f (x)−
m−1

∑
s=0

f (s)(0+)
xs

s!
, m−1 < α � m, (12.4)

is satisfied.

2.3 Homotopy Perturbation Method

The brief outline of HPM is given in general by He in [18, 20]. For convenience,
consider the following nonlinear differential equation

L(u)+N (u) = f (r), r ∈ Ω , (12.5)

with boundary condition

B

(
u,

∂ u
∂ n

)
= 0, r ∈ Γ ,

where L is a linear operator, while N is nonlinear operator, B is a boundary operator,
Γ is the boundary of the domain Ω and f (r) is a known analytic function. The
He’s homotopy perturbation technique defines the homotopy v(r, p) : Ω × [0,1]→R

which satisfies

H (v, p) = (1− p)[L(v)−L(u0)]+ p [L(v)−N (v)− f (r)] = 0, (12.6)

where p ∈ [0,1] is an embedding parameter, u0 is an initial approximation which
satisfies the boundary conditions. The changing process of p from zero to unity is
just that of v(r, p) from u0 to u(r). The basic assumption is that the solution of (12.6)
can be expressed as a power series in p:

v = v0 + pv1 + p2v2 + · · ·

The approximate solution of nonlinear equation (12.5), therefore can be readily
obtained:

u = lim
p→1

v = v0 + v1 + v2 + · · · (12.7)

The convergence of the series (12.7) has been proved in [19,21] and the asymptotic
behavior of the series is given in [22, 23].
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2.4 The Runge–Kutta Method

The Runge–Kutta method is one of the well known numerical methods for
differential equations. The fourth order Runge–Kutta method computes the approx-
imate solutions of the problem ẋ = f (t,x) by the following iterative equations:

xn+1 = xn +
1
6

h(k1 +2k2+2k3 + k4),

k1 = f (tn,xn),

k2 = f

(
tn +

1
2

h,xn +
1
2

hk1

)
,

k3 = f

(
tn +

1
2

h,xn +
1
2

hk2

)
,

k4 = f (tn +h,xn +hk3),

where h is the fixed step size ti − ti−1 and xn is the estimated value of the solution at
the time tn.

3 Multistage HPM for System of FDEs

In this section we solve NLP problems which are governed by system of fractional
differential equation. Consider the unconstrained optimization problem (12.3), an
approach based on fractional dynamic system can be described by the following
FDEs

CDα x(t) =−∇xF(x,μ), (12.8)

subjected to the initial conditions

x(t0) = x(0),

where CDα is the fractional derivative in Caputo sense of x of order α (0 < α � 1).
Note that, a point xe is called an equilibrium point of (12.8) if it satisfies the right

hand side of (12.8). For convenience of reader, we reformulate fractional dynamic
system (12.8) as follows:

CDα xi(t) = gi(t,μ ,x1,x2, . . . ,xn), i = 1,2, . . . ,n. (12.9)

The steady state solution of the nonlinear system of FDEs (12.9) must be coincided
with local optimal solution of the NLP problem (12.1).

In order to find the solution of system (12.9), we use multistage HPM. Because
the multistage strategy is provided to reach steady state solution in whole time
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horizon rather than traditional HPM. According to (12.6), we have constructed the
following homotopy:

CDα xi(t) = pgi(t,μ ,x1,x2, . . . ,xn), (12.10)

where i = 1,2, . . . ,n and p ∈ [0,1]. If p = 0, (12.10) becomes the linear equation

CDα xi(t) = 0,

and when p = 1, the homotopy (12.10) turns out to be the original system given in
(12.9).

We assume that the system (12.9) is defined on the time interval t ∈ [0,T ].
We divide the time interval into N equal length subintervals ΔT = Tj − Tj−1,
j = 1,2, . . . ,N with T0 = 0 and TN = T . Using the parameter p, we expand the
solution xi in the following form:

xi (t) = xi,0 (t)+ pxi,1 (t)+ p2xi,2 (t)+ · · · , i = 1,2,3, . . . ,n. (12.11)

Also, we take the initial approximations as below

x1,0 (t) = x1 (t
∗), x2,0 (t) = x2 (t

∗), . . . ,xn,0 (t) = xn (t
∗), (12.12)

where t∗ is the left end point of each subinterval and initial conditions as

x1,1 (t
∗) = 0, x2,1 (t

∗) = 0, . . . ,xn,1 (t
∗) = 0

...

x1,K (t∗) = 0, x2,K (t∗) = 0, . . . ,xn,K (t∗) = 0

...

Substituting (12.11) into (12.10), and equating the coefficient of the terms with
identical power of p, we get

p0 : CDα xi,0(t) = 0
p1 : CDα xi,1(t) = gi,1(t,μ ,x1,0, . . . ,xn,0)

...
pK : CDα xi,K(t) = gi,K(t,μ ,x1,0, . . . ,xn,0;x1,1, . . . ,xn,1; . . . ;x1,K−1, . . . ,xn,K−1)

...
(12.13)

where i = 1,2,3, . . . ,n and the function gi,1,gi,2, . . . satisfy the following equation:

gi(t,μ ,x1,0 + px1,1 + · · · ,x2,0 + px2,1 + · · · ,xn,0 + pxn,1+ · · ·)
= gi,1(t,μ ,x1,0, . . . ,xn,0)+ pgi,2(t,μ ,x1,0, . . . ,xn,0;x1,1, . . . ,xn,1)

+ p2gi,3(t,μ ,x1,0, . . . ,xn,0;x1,1, . . . ,xn,1;x1,2, . . . ,xn,2)+ · · · .
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For solving the linear system (12.13), we apply the inverse operator Iα both side
of equations. Therefore the components xi,k (i = 1,2, . . . ,n ; k = 0,1,2, . . .) of the
multistage HPM can be determined. In order to carry out the iterations for every
subinterval, we have to clarify initial approximations (12.12). For this purpose we
set t∗ = t0. In multistage HPM, the iterations provide appropriate value of solutions
by means of the previous K-term approximations Φi,K of the preceding subinterval.
Consequently, the approximation solution of (12.9) can be denoted as follows:

xi(t) = Φi,K =
K−1

∑
k=0

xi,k, 1 � i � n. (12.14)

Here the effectiveness and the applicability of the approach especially depend on
choosing ΔT and the number of term in approximate solution (12.14).

4 Numerical Implementation

To illustrate the effectiveness of the multistage HPM according to the HPM and
fourth order Runge–Kutta method, some test problems are taken from Hock and
Schittkowski [33, 34]. Methods are coded in Maple and digits of the variables are
set to 15 in all the calculations done in this paper.

Example 12.1. Consider the following NLP problem [34, Problem No: 216]

minimize f (x) = 100
(
x2

1 − x2
)2

+(x1 −1)2 ,

subject to h(x) = x1 (x1 −4)−2x2 +12 = 0.
(12.15)

The optimal solution is x∗ = (2,4)T . For solving the above problem, we convert it
to an unconstrained optimization problem with quadratic penalty function (12.2) for
γ = 2, then we have

F (x,μ) = 100
(
x2

1 − x2
)2

+(x1 −1)2 +
1
2

μ (x1 (x1 −4)−2x2 +12)2 ,

where μ ∈R
+ is an auxiliary penalty variable. The corresponding nonlinear system

of FDEs from (12.8) is defined as

CDα x1(t) =−400(x2
1 − x2)x1 −2(x1 −1)−μ(2x1−4)(x2

1 −4x1 −2x2 +12),
CDα x2(t) = 200(x2

1 − x2)+ 2μ(x2
1 −4x1 −2x2 +12),

}

(12.16)

where 0 < α � 1. The initial conditions are x1(0) = 0 and x2(0) = 0. Utilizing
the homotopy (12.10) with auxiliary penalty variable μ = 800 and step size
ΔT = 0.00001, the terms of the multistage HPM solutions (12.14) are acquired.
In Fig. 12.1(a)–(b) we show the approximate–exact solution x1 and x2 of the
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a b

Fig. 12.1 Comparison of x1 (a) and x2 (b); Dash: HPM for α = 0.9, Dashdot: MHPM (ΔT =
0.00001) for α = 1, Solidline: MHPM(ΔT = 0.00001) for α = 0.9, Open circle: RK4(ΔT =
0.00001) for α = 1

Table 12.1 Comparison of x(t) between HPM and MHPM with RK4 solutions for different value
of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)
t x1(t) x2(t) x1(t) x2(t) x1(t) x2(t) x1(t) x2(t)

0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.001 −0.69E +07 −0.11E +07 1.9991 3.9996 1.9338 3.8549 1.9338 3.8549
0.002 −0.84E +08 −0.14E +08 1.9993 3.9998 1.9916 3.9915 1.9916 3.9915
0.003 −0.36E +09 −0.62E +08 1.9993 3.9998 1.9986 3.9992 1.9986 3.9992
0.004 −0.10E +10 −0.17E +09 1.9993 3.9998 1.9993 3.9997 1.9992 3.9997
0.005 −0.23E +10 −0.39E +09 1.9993 3.9998 1.9994 3.9998 1.9993 3.9998

problem (12.15) for the derivative order α = 1 and α = 0.9. We see that for
α = 1 and α = 0.9 our solutions obtained using the multistage HPM are in
good agreement with the RK4 method solution on x∗ = (2,4)T . Furthermore, the
numerical results in Table 12.1 show that the multistage HPM for α = 0.9 has better
performance than for α =1. Clearly, the MHPM(α=0.9) iterations converge faster
than MHPM(α =1) and RK4. So, it seems fractional order dynamical systems more
realistic than integer order one for finding optimal solution of NLP problem.

Example 12.2. Consider the equality constrained optimization problem [33, Prob-
lem No: 79]

minimize f (x) = (x1 −1)2 +(x1 − x2)
2 +(x2 − x3)

2 +(x3 − x4)
4 +(x4 − x5)

4

subject to h1(x) = x1 + x2
2 + x3

3 −2−3
√

2 = 0,
h2(x) = x2 − x2

3 + x4 +2−2
√

2 = 0,
h3(x) = x1x5 −2 = 0.

(12.17)
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Table 12.2 Comparison of x(t) between HPM and MHPM with RK4 solutions for different value
of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)
t x1(t) x2(t) x1(t) x2(t) x1(t) x2(t) x1(t) x2(t)

0 2 2 2 2 2 2 2 2
2 0.160E +8 0.620E +8 1.198931 1.369223 1.182161 1.352495 1.191010 1.359541
10 0.288E +9 0.112E +10 1.191090 1.362530 1.191050 1.362499 1.191082 1.362524
15 0.594E +9 0.230E +10 1.191090 1.362530 1.191084 1.362498 1.191090 1.362530
20 0.100E +10 0.388E +10 1.191090 1.362530 1.191082 1.362472 1.191090 1.362530
30 0.209E +10 0.811E +10 1.191090 1.362530 1.191113 1.362541 1.191090 1.362530

Table 12.3 Comparison of x(t) between HPM and MHPM with RK4 solutions for different value
of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)
t x3(t) x4(t) x3(t) x4(t) x3(t) x4(t) x3(t) x4(t)

0 2 2 2 2 2 2 2 2
2 0.301E +9 −0.420E +7 1.468744 1.616076 1.478320 1.661326 1.474039 1.641529
10 0.546E +10 −0.756E +8 1.472774 1.634738 1.472792 1.634827 1.472778 1.634755
15 0.113E +11 −0.156E +9 1.472774 1.634738 1.472786 1.634792 1.472774 1.634738
20 0.191E +11 −0.263E +9 1.472774 1.634738 1.472798 1.634853 1.472774 1.634738
30 0.395E +11 −0.550E +9 1.472774 1.634738 1.472765 1.634750 1.472774 1.634738

The solution of (12.17) is x∗ ≈ (1.191127,1.362603,1.472818,1.635017,
1.679081)T , and this is not an exact solution. The equality constrained optimization
problem (12.17) is transformed to an unconstrained optimization problem by using
quadratic penalty function (12.2) for γ = 2 as follows:

F (x,μ) = f (x)+
1
2

μ
3

∑
l=1

(hl(x))
2 ,

where μ ∈R
+ is an auxiliary penalty variable.

The corresponding nonlinear system of FDEs from (12.8) is defined as

CDα x(t) =−∇ f (x)−μ∇h(x)h(x), (12.18)

where 0 < α � 1. The initial condition is x(0) = (2,2,2,2,2)T that is not feasible.
Using the homotopy (12.10) with auxiliary penalty variable μ = 75 and step
size ΔT = 0.0001, the multistage HPM approximate–exact solutions (12.14) are
obtained. In Tables 12.2–12.4, the comparison of the xi, i = 1,2,3,4,5 solutions
between the HPM for α = 0.9, the multistage HPM for α = 0.9 and α = 1 with the
classical RK4 method are given, respectively. Here, the solutions continuously de-
pends on the order of fractional derivative. Furthermore, our approximate solutions
using the multistage HPM are in good agreement with the RK4 method solution and
the optimal solution of the optimization problem (12.17).
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Table 12.4 Comparison of x(t) between HPM and MHPM with RK4 solutions
for different value of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)

t x5(t) x5(t) x5(t) x5(t)

0 2 2 2 2
2 0.102E +7 1.668076 1.691867 1.679209
10 0.183E +8 1.679130 1.679187 1.679140
15 0.378E +8 1.679130 1.679136 1.679130
20 0.637E +8 1.679130 1.679142 1.679130
30 0.133E +9 1.679130 1.679093 1.679130

5 Conclusions

In the present work, the HPM has been successfully used to obtain approximate
analytical solutions of NLP problems. Initially, the NLP problem is reformulated
by a system of FDEs. In order to see the essential behavior of the system of FDEs,
the multistage strategy is adapted to the HPM. The numerical comparison among
the fourth order Runge–Kutta (RK4), the multistage HPM (α = 0.9 and α = 1)
and HPM (α = 0.9) shows that the multistage HPM (α = 0.9) performs rapid
covergency to the optimal solutions of the optimization problems. Consequently,
these results verify the efficiency of the multistage HPM as a practical tool for
solving NLP problem.
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