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Genetic algorithms (GAs) are efficient stochastic search techniques for approximating optimal solutions within complex
search spaces and used widely to solve NP-hard problems. Genetic algorithm includes a number of parameters whose
different levels strictly affect the performance of the algorithm. The general approach to determine the appropriate
parameter combination of GA depends on too many trials of different combinations, and the best one of them that pro-
duces good results is selected for the programme, which would be used for problem solving. A few researchers studied
on the parameter optimisation of GA. In this paper, response surface-dependent parameter optimisation is proposed to
determine the optimal parameters of GA. Results are tested for benchmark problems that are most common in mixed-
model assembly line balancing problems of type-I.

Keywords: Genetic algorithm (GA); Response surface methodology (RSM); Assembly line balancing; Parameter
optimisation; Design of experiment

1. Introduction

Genetic algorithms (GAs) are part of the so-called evolutionary algorithms based on natural genetics that provide robust
search capabilities in complex spaces, and thereby they offer a valid approach to problems requiring efficient and effec-
tive search processes. The basic idea is to maintain a population of individuals those representing candidate solutions to
the problem that evolves over time through a process competition and they do not need to have any information about
the search space, just needing a fitness function that assigns a value to each solution (Costa, Maciel, and Filho 2005;
Fernandez-Prieto et al. 2011).

The running principle of GA depends on setting up of a relatively large number of parameters and requires perform-
ing lots of runs for different combinations of them to obtain the most appropriate structure that gives nearly optimal
solution. There are few researches about parameter optimisation of GAs. Lobo and Goldberg (2004) presented the
parameter-less GA to simplify GA operation by incorporating knowledge of parameter selection and population-sizing
theory in the GA and applied it to a network expansion problem. Siriwardene and Perera (2006) used proportionate and
linear ranking selection methods to determine model parameter convergence and recommended the proportionate selec-
tion method for urban drainage model parameter optimisation. Fernandez-Prieto et al. (2011) used fuzzy logic to deter-
mine GA control parameters (fuzzy adaptive genetic algorithms – FAGAs).

Taguchi experimental design is one of the well-known and effective experimental techniques that requires less exper-
iment, and is used to find the best combination of parameters. Yang et al. (2005) combined the Taguchi experimental
method with the GA to find the best combination of the GA parameters. One disadvantage of Taguchi method is that it
does not give the mathematical model of the relations between parameters; so, predicting the intermediate values is
impossible. Subbaraj, Rengaraj, and Salivahanan (2011) proposed a new optimisation algorithm, namely Taguchi self-
adaptive real-coded GA and implemented it to solve economic dispatch problem with valve-point loading. Chang
(2011) used Taguchi method to determine the important parameters in GA neural networks, with the goal of reducing
the estimation error. The second one in the design of experiment techniques is the factorial design. This technique is
used to model the non-quadratic relations between the factors and the response. The third and the widely used
well-known design of experiment technique is the response surface methodology (RSM), which is based on statistical
considerations that brings the most meaningful information about the influences of parameters on a specific problem,
and process optimisation using RSM is usually achieved by simultaneous testing of numerous factors in a limited
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number of experiments. Therefore, RSM consumes less time and effort (Bayhan and Onel 2010; Costa, Maciel, and Fil-
ho 2005). Remarkable studies in the literature on this subject began with Pongcharoen et al. (2002). In this study, the
authors performed a factorial experiment to identify appropriate values of GA parameters that produce the best results
within a given execution time and developed a genetic algorithm-based scheduling tool (GAST) for scheduling of com-
plex products with multiple resource constraints and deep product structure. Costa, Maciel, and Filho (2005) applied
fractional factorial design for the selection of the parameters of GA and applied the GA to a batch cooling crystallisation
optimisation. The brief literature review is summarised in Table 1.

According to Table 1, it is clearly observed that the studies on determining optimal parameter combination of GAs
are limited, and response surface optimisation is not used for determining optimal GA parameters. In the present study,
mixed-model assembly line balancing problem of type-I (MMALBP-I) is handled for a benchmark problem (test
problem 8), which is taken from Simaria (2006), and the regression equation and optimum parameters calculated by
response surface optimiser of Minitab-16 package is presented. Then, the experimental study is extended for the
benchmark problems. When we reviewed the literature, we observed that RSM is not used for this purpose. The
originality of this work is the application of RSM to the parameter optimisation of GA for MMALBP-I.

The rest of the paper is organised as follows. The concept and formulations of GA, RSM and MMALBP-I are
presented in Section 2. An illustrative example is solved in Section 3. Discussions are given with the obtained results of
test problems in Section 4 and conclusions are given in Section 5.

2. Proposed GA

GAs are powerful and broadly applicable random search and optimisation techniques, based on the principles of evolution
theory. In recent years, GAs have been known to be extremely efficient for solving NP-hard problems (Zaman, Paul, and
Azeem 2012). The following subsections describe in detail the features of the GA which are used in this research.

In the algorithm, we used task-based representation, which was used by Leu, Matheson, and Rees (1994), Sabuncuo-
glu and Tanyer (2000) and Akpinar and Bayhan (2011), since that is the most appropriate chromosome type for line bal-
ancing problems. The length of the chromosome is defined by adding two genes to the number of tasks. These two
genes represent the station number and fitness value (FV) at the end of each chromosome. In task-based sequences, the
chromosomes need to fit the precedence relationship diagram because of the technological precedence restrictions.
Therefore, permutation coding method was used to sequence the tasks on the chromosomes without any repetition.

Random initialisation method, which initialises each chromosome randomly, was used to produce starting popula-
tion. Initialisation method was specified in order to prevent unsuitable chromosomes, which interrupt precedence
relationships.

GA used in this research employs the objective function given in Equation (1) as the fitness function to evaluate
each individual’s performance measure (fitness) in the search space.

Fitness Value ¼
XS

k¼1

(C �Wk)

S

2

(1)

Table 1. An overview of approaches in the literature on parameter optimisation of GAs.

Publications Method Problem

Pongcharoen et al. (2002) Factorial design, regression analysis Scheduling of complex products with multiple resource
constraints

Lobo and Goldberg (2004) Parameter-less genetic algorithm Network expansion problem
Costa, Maciel, and Filho

(2005)
2k-1 fractional factorial design Batch cooling crystallisation optimisation

Siriwardene and Perera
(2006)

Proportionate selection, linear ranking
selection

Urban drainage model parameter optimisation

Yang et al. (2005) Taguchi Flight control design
Chang (2011) Taguchi Obtaining the steady state output voltage of proton

exchange membrane fuel cell (PEMFC)
Fernandez-Prieto et al.

(2011)
Fuzzy adaptive genetic algorithms –
FAGAs

Computer networks under traffic loads

Subbaraj, Rengaraj, and
Salivahanan (2011)

Taguchi self-adaptive real-coded genetic
algorithm (TSARGA)

Economic dispatch problem
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where C, Wk and S denote the cycle time of the assembly line, workload of the station k and the number of worksta-
tions required to meet the demand in the assembly line, respectively.

Individuals are selected randomly for mating. Thus, diversity is to be protected and probable better solutions can be
occurred with the mating of worse individuals.

Two-point crossover method was used to perform the crossover operator according to the predefined crossover rate
(CR). For mating, the individuals are selected randomly and paired with the other individuals.

The mutation operator exchanges randomly selected two genes according to the mutation rate (MR) in a chromosome
that is selected randomly. After the crossover and mutation operators, FVs of the new offspring are compared with the
individuals’ and the ones that have better FVs are transferred to next generation.

Elitism operator is applied indirectly by ensuring that none of the best individuals are missed during the iterations.
New generation is formed by selecting the best individuals according to their FVs among the current population, off-

spring produced by crossover and individuals who underwent mutation. Population size is kept constant by replacing
the worse individuals with new ones by taking into account the FVs.

Repairing operator is not used in this algorithm since unsuitable chromosomes are not allowed to produce during
the initialisation, crossover and mutation processes. Figure 1 shows the flow chart of GA used in this research.

2.1 Assembly line balancing problem

Assembly line balancing problem has received significant attention in the literature over five decades since it was first
formulated by Salveson (1955) (Hamzadayi and Yildiz 2012). An assembly line consists of a number of workstations
linked together with a material handling system, such as conveyor or moving belt (Azzi et al. 2012). The most common
and difficult problem is to determine how these tasks can be assigned to the stations fulfilling certain restrictions, since
the manufacturing process is divided into a set of tasks. So, the main objective is to determine optimal assignment of
the tasks to the workstations (Chica et al. 2012).

Figure 1. Flow chart of proposed GA.
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There are three types of MMALBP in the literature, and these are classified according to their objective functions.
The types of the MMALBP are (Scholl 1995):

• MMALBP-I: The number of workstations is to be minimised for a given cycle time.

• MMALBP-II: The cycle time is to be minimised for given number of workstations.

• MMALBP-E: The cycle time and the number of workstations are to be minimised simultaneously.

The objective function used as fitness function of GA (Equation (1)) was taken from Leu, Matheson, and Rees
(1994). This function minimises not only total number of workstations, but also helps workload smoothing between the
workstations at the same time.

The decision variables xik and rk check whether the task i is assigned to the workstation k and if the workstation k
is replicated or not, respectively.

xik ¼ 1; if task i is assigned to workstation k;
0; otherwise

�

rk ¼ 1; if workstation k is replicated;
0; otherwise

�

Assumptions of the model are (Akpinar and Bayhan 2011; Vilarinho and Simaria 2002):

• the planning horizon has a fixed length P,

• a set of similar M models can be simultaneously assembled,

• the forecast demand, over the planning horizon, for model m is Dm, requiring the line to be operated with a
cycle time;

C ¼ P=
XM
m¼1

Dm (2)

• the overall proportion of the number of units of model m being assembled is then:

qm ¼ Dm=
XM
p¼1

Dp (3)

(where Dp describes the amount of total production for all models)

• each model has its own set of precedence relationships; but, there is a subset of tasks common to all models.
Hence, the precedence diagrams for all the models can be combined and the resulting one has N tasks,

• N tasks are performed in a set of S workstations,

• the time required to perform task i on model m, tim, may vary among models (tim ¼ 0 means that model m does
not require task i to be assembled),

• a task can be assigned to only one workstation, and consequently the tasks that are common to several models
need to be performed at the same workstation,

• the set of tasks that cannot be performed before task i is completed, Fi (successors of task i), is given by the
precedence constraints derived from the combined precedence diagram,

• the zoning constraints are defined in the assembly process, ZP is the set of task pairs that must be assigned to
the same workstation (compatible tasks) and ZN is the set of task pairs that cannot be performed at the same
workstation (incompatible tasks),

• a workstation can be duplicated upto a maximum of MAXP replicas, but only if the task time of one of the
tasks assigned to it exceeds a predefined value (a% of the cycle time) for at least one of the models (for our
model MAXP ¼ 2),

5042 I. Kucukkoc et al.



• Skm symbolises the idle time of workstation k for model m.

Constraints considered in the model are (Vilarinho and Simaria 2002):

XS

k¼1

xik ¼ 1 i ¼ 1; . . . ;N (4)

XS

k¼1

xak �
XS

k¼1

xbk � 0 a 2 N ; b 2 Fa (5)

XS

k¼1

xak �
XS

k¼1

xbk ¼ 0 (a; b) 2 ZP (6)

xak þ xbk � 1 (a; b) 2 ZN ; k ¼ 1; . . . ; S (7)

XN
i¼1

timxik þ Skm ¼ C 1þ rk(MAXP � 1)½ � k ¼ 1; . . . ; S; m ¼ 1; . . . ;M (8a)

rk �
X

i:9tim[aC; m¼1;...;M

xik k ¼ 1; . . . ; S; 0\a\100% (8b)

Mrk �
X

i:9tim[aC;m¼1;...;M

xik k ¼ 1; . . . ; S; 0\a\100% (8c)

Skm � 0 k ¼ 1; . . . ; S; m ¼ 1; . . . ;M (9a)

xik 2 ½0; 1� k ¼ 1; . . . ; S; i ¼ 1; . . . ;N (9b)

rk 2 ½0; 1� k ¼ 1; . . . ; S (9c)

The objective function (given in Equation (1)) minimises the sum of the squares of the idle times for each worksta-
tion; thus, it minimises not only the total number of workstations, but also the unbalanced workload between the worksta-
tions. Constraint (4) ensures that each task is assigned to exactly one workstation. Constraint (5) ensures none of the
successors of a task are assigned to an earlier station than that task. Constraint (6) describes positive zoning constraints
(compatibility zoning constraint). For instance, if any two tasks need to be performed at the same workstation because of
technological restrictions, they must be assigned to same workstation. Constraint (7) describes negative zoning constraints
(incompatibility zoning constraint). For example, if it is dangerous or impossible to perform any two tasks at the same
workstation, they must be assigned to different workstations. Constraint (8a) ensures that the capacity is not exceeded for
any workstation, constraint (8b) ensures that the maximum number of replicas of a workstation is not exceeded and con-
straint (8c) ensures that only workstations where the processing time of the tasks are assigned to it, for at least one model,
exceeds a certain proportion (a%) of the cycle time can be duplicated (where M is a very large positive integer). Con-
straint (9a) describes the idle time of workstations equal or more than zero. Additionally, constraints (9b) and (9c) define
the domain of the decision variables (Akpinar and Bayhan 2011; Vilarinho and Simaria 2002).

2.2 Response surface methodology

RSM is a union of statistical and mathematical techniques used for modelling mathematical relations between the inputs
and outputs of a process, which is necessary for developing, improving and optimising processes. RSM has been used
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extensively in engineering problems to examine and characterise problems, in which input variables influence some per-
formance aspects of the product or process. This performance measure is called as response. Product or process optimi-
sation using RSM is usually achieved by simultaneous testing of numerous factors (controllable input variables) in a
limited number of experiments. Therefore, RSM consumes less time and effort. Furthermore, RSM provides quantitative
measurements of possible interactions between factors, difficult information to obtain using other optimisation tech-
niques (especially by using heuristics). Detection and quantification of the interactions between various factors are
important at the optimisation stage in engineering problems (Bayhan and Onel 2010). RSM was proposed by Box and
Wilson (1951) for finding the input combination that minimises the output of a real non-simulated system. In most
RSM problems, the form of the relationship between independent variables and the response is unknown and approxi-
mated (Dhupal, Doloi, and Bhattacharyya 2007). Equation (10) shows the general second-order polynomial response
surface mathematical model (full quadratic model) for the experimental design (Dhupal, Doloi, and Bhattacharyya 2007;
Yalcinkaya and Bayhan 2009).

Yu ¼ b0 þ
Xn

i¼1

biXiu þ
Xn

i¼1

biiX
2
iu þ

Xn

i\j

bijXiuXju þ eu (10)

where Yu is the corresponding response, Xiu and X ju are coded values of the ith and jth input parameters (i< j),
respectively, the terms b0; bi; bii and bij are the regression coefficients and eu is the residual experimental error of the
uth observation.

The model, in terms of the observations, may be written in matrix notation as (Montgomery 2001):

Y ¼ bX þ e (11)

where Y is the output matrix, X is the input matrix and ɛ is the matrix of residuals (error term). The least square
estimator of β matrix that is comprised of coefficients of the regression equation is calculated by the given formula in
Equation (12):

b ¼ (X 0X )�1X 0Y (12)

The fitted regression models, with the coefficients for FV are given in the next section.

3. Results

3.1 Parameter optimisation of GA

Randomised experimental runs were carried out to minimise the error. The factor levels of GA parameters for the exper-
iments are generation number (GN ), population size (PS), crossover rate (CR) and mutation rate (MR), which are listed
in Table 2. The levels of these parameters are determined randomly by considering the levels from similar studies
presented previously in the literature based on GA and MMALBP-I. Table 3 shows the experimental design, detailing
the experiment run order of each experiment and coded values of the process parameters (namely factors). For each
experiment, 100 runs are performed. Minitab-16 statistical software was used to establish mathematical models for
optimisation of the GA parameters. The software uses the mathematical substructure given in Section 2.2.The RSM
based mathematical model that represents the relations between the response FV and the factors GN ;PS ;CR and MR is
established by considering the experimental design and given in Equation (13).

FV ¼ 10:0788� 0:23994GN � 0:43357PS � 0:12353CR � 0:09101MR þ 0:174854G2
N þ 0:225179P2

S

þ 0:116204C2
R þ 0:010491M 2

R � 0:12087GNPS þ 0:090719GNCR � 0:13349GNMR � 0:03798PSCR

� 0:02787PSMR � 0:02046CRMR (13)

Optimisation procedure was performed to achieve the target value of FV, which is given in Equation (1). Optimum
parameter settings obtained are presented in Figure 2.

The current coded optimal process parameter settings for achieving the targeted FV of FV ¼ 9 are calculated as
GN ¼ 1:9596; PS ¼ 1:6364; CR ¼ 0:2222 and MR ¼ 2. After the normalisation, the uncoded values are calculated as
GN ¼ 1039:9; PS ¼ 92:728; CR ¼ 0:5444 and MR ¼ 0:25, respectively (Table 4). The response is optimised at the
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above parametric combination with desirability (d) of 0.9912 (99.12%), and the optimised response value of FV is cal-
culated as 9.0264 (see Figure 2).

The experimental results for the given case under this study are presented in the next section.

3.2 Experimental results for MMALBP-I

The GA was tested on a benchmark problem (test problem 8), given in Table 5, with the parameters found by RSM.
The main characteristics of the most common test problems in the relevant literature are presented in Table 5 and the
results compared with the previous results demonstrated in the literature for test problem 8 are shown in Table 6. To
describe the problems, the number of tasks of the combined precedence diagram (N), the number of models (M) and the
cycle time of the assembly line (C) are given in the columns 3–5 and 9–11 in Table 5.

Table 2. Levels and values of GA parameters GN ; PS ; CR, and MR.

Parameter Symbol

Level

�2 �1 0 1 2

Generation number GN 50 300 550 800 1050
Population size PS 20 40 60 80 100
Crossover rate CR 0.1 0.3 0.5 0.7 0.9
Mutation rate MR 0.05 0.1 0.15 0.2 0.25

Table 3. Design of experiments matrix showing coded values and observed responses for 100 runs.

Experiment
Number

Run
Order

Coded Value
Response

GN PS CR MR

Average
FV

1 1 �1 �1 �1 �1 11.6584
2 2 1 �1 �1 �1 10.7626
3 3 �1 1 �1 �1 10.4247
4 4 1 1 �1 �1 9.9721
5 5 �1 �1 1 �1 10.7962
6 6 1 �1 1 �1 11.2854
7 7 �1 1 1 �1 10.0964
8 8 1 1 1 �1 10.4255
9 9 �1 �1 �1 1 10.8994
10 10 1 �1 �1 1 11.2969
11 11 �1 1 �1 1 11.0452
12 12 1 1 �1 1 9.6723
13 13 �1 �1 1 1 11.5418
14 14 1 �1 1 1 10.9198
15 15 �1 1 1 1 10.4896
16 16 1 1 1 1 9.4210
17 17 �2 0 0 0 11.2915
18 18 2 0 0 0 10.0103
19 19 0 �2 0 0 11.5502
20 20 0 2 0 0 10.1542
21 21 0 0 �2 0 10.9685
22 22 0 0 2 0 9.8641
23 23 0 0 0 �2 10.5057
24 24 0 0 0 2 9.4812
25 25 0 0 0 0 10.0597
26 26 0 0 0 0 10.0849
27 27 0 0 0 0 10.1023
28 28 0 0 0 0 10.1178
29 29 0 0 0 0 10.0195
30 30 0 0 0 0 10.0634
31 31 0 0 0 0 10.1041
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The precedence diagram (Figure 3) and task processing times used for the test problem 8 (with 25 tasks, 3 models)
was taken from Simaria (2006). The coding of the GA was developed in Matlab R2008a and implemented on Intel Core
i5 CPU M480 2.67GHz system with 3GB RAM and 64-bit operating system.

The computational results for the given test problem are presented in Table 6. LBpmix column shows the lower bound
on the total number of workstations for relevant problem (Vilarinho and Simaria 2002). The columns Kilbridge &
Wester, Moodie & Young, RPWT and Pure GA (Akpinar and Bayhan 2011) show the best solutions in the relevant
literature found by different solution approaches. V&S (SA) and A&B (hGA) columns represent the best solutions

Table 4. Results of parameter optimisation.

Symbol Coded value Uncoded value Rounded value

GN 1.9596 1039.9 1040
PS 1.6364 92.73 93
CR 0.2222 0.54 0.50
MR 2 0.25 0.25

Figure 2. Optimisation results for GN ;PS ;CR, and MR.

Table 5. Test problems (Akpinar and Bayhan 2011; Scholl 1995; Vilarinho and Simaria 2002).

Problem
no N M C Precedence relations

Problem
no N M C

Precedence
relations

Small-size 1 8 2 10 Bowman Medium-
size

11 30 2 10 Sawyer
2 8 3 10 Bowman 12 30 3 10 Sawyer
3 11 2 10 Gokcen and Erel (1998) 13 32 2 10 Lutz 1
4 11 3 10 Gokcen and Erel (1998) 14 32 3 10 Lutz 1

Medium-
size

5 21 2 10 Mitchel Large size 15 35 2 10 Gunther
6 21 3 10 Mitchel 16 35 3 10 Gunther
7 25 2 10 Vilarinho and Simaria

(2002)
17 45 2 10 Kilbridge & Wester

8 25 3 10 Vilarinho and Simaria
(2002)

18 45 3 10 Kilbridge & Wester

9 28 2 10 Heskiakof 19 70 2 10 Tonge
10 28 3 10 Heskiakof 20 70 3 10 Tonge
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found by Vilarinho and Simaria (2002), by using simulated annealing (SA) algorithm, and Akpinar and Bayhan (2011)
by using hybrid genetic algorithm (hGA), respectively. RSM-GA column represents the best station number found by
using optimised parameters of GA obtained from RSM. The task sequences discovered by RSM-GA procedure are
given in appendices.

3.3 Comparisons for well-known design of experiment techniques

In this section, a comprehensive experimental design is performed to clearly show the advantage of using RSM instead
of using other well-known design of experiment techniques. For this purpose, experimental designs are performed for
the two well-known design of experiment technique, namely Taguchi method and 2k factorial design.

It is well known in the literature that Taguchi method requires less experiment when compared with RSM; but, this
method provides only the optimum combination of factor levels. So, RSM is more appropriate for this type of problem
because it is possible with RSM to calculate the optimum factor levels with decimals, as can be seen in Table 4. In
other words, it is possible to obtain more sensitive parameter levels with RSM when it is compared with the solutions
of Taguchi method. The same sensitivity may also be obtained by 2k factorial design; but, this technique depends on the
first-order (linear) relations between the independent factors. The parameter optimisation case presented in this study
shows nonlinear relations because of the nature of the problem. So, 2k factorial design does not seem a good alternative
to the RSM. The factor levels for Taguchi method and 2k factorial design are presented in Tables 7 and 10, and the sim-
ulation results for the given experimental designs are presented in Tables 8 and 11 respectively.

By using the five-level design of Taguchi for four factors, the design composed of 25 experiments is obtained and
displayed in Table 8, and the average FV values are calculated for each parameter combination.

Table 6. Computational results (station numbers) for test problem 8.

# Problem LBpmix

Kilbridge &
Wester

Moodie & Young
(Phase I) RPWT

Pure
GA

V&S
(SA)

A&B
(hGA) RSM-GA

8 Vilarinho and Simaria (2002) 14 15 15 15 15 15 14 14

Figure 3. Precedence diagram of test problem 8 (Simaria 2006).

Table 7. Factor levels and values of GA parameters for Taguchi design.

Parameter Symbol

Level

1 2 3 4 5

Generation number GN 50 300 550 800 1050
Population size PS 20 40 60 80 100
Crossover rate CR 0.1 0.3 0.5 0.7 0.9
Mutation rate MR 0.05 0.1 0.15 0.2 0.25
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For the optimisation, smaller is better criterion of Taguchi method is used. For minimising average FV; Signal to
Noise (S/N) ratios for each experimental runs are calculated from Minitab. Minitab uses the formula given below in
Equation (14) to calculate S/N ratios for smaller is better criteria:

S=N ¼ �10 log
X

Y 2=n
� �� �

(14)

Calculated signal to noise (S/N) ratios for smaller is better criteria are listed in Table 9. The factor level that has the
maximum S/N ratio for each factor is selected as the optimum factor level for the factors and is given in bold.

Table 10. Factor levels and values of GA parameters for 2k factorial design.

Parameter Symbol

Level

�1 1

Generation number GN 50 1050
Population size PS 20 100
Crossover rate CR 0.1 0.9
Mutation rate MR 0.05 0.25

Table 8. Taguchi design and simulation results for average FV.

Experiment number Run order

Coded value
Response

GN PS CR MR Average FV

1 1 1 1 1 1 12.8754
2 2 1 2 2 2 10.2845
3 3 1 3 3 3 10.3232
4 4 1 4 4 4 10.0746
5 5 1 5 5 5 10.0551
6 6 2 1 2 3 12.5041
7 7 2 2 3 4 11.6579
8 8 2 3 4 5 9.7338
9 9 2 4 5 1 10.0792
10 10 2 5 1 2 9.2989
11 11 3 1 3 5 12.4054
12 12 3 2 4 1 10.9296
13 13 3 3 5 2 10.2612
14 14 3 4 1 3 11.1595
15 15 3 5 2 4 9.7173
16 16 4 1 4 2 12.5572
17 17 4 2 5 3 10.496
18 18 4 3 1 4 9.6257
19 19 4 4 2 5 10.9025
20 20 4 5 3 1 10.1299
21 21 5 1 5 4 12.4396
22 22 5 2 1 5 10.1224
23 23 5 3 2 1 10.9064
24 24 5 4 3 2 10.8023
25 25 5 5 4 3 10.1464

Table 9. Signal to noise (S/N) ratios for smaller is better criteria.

Level GN PS CR MR

1 �20.57 �21.98 �20.46 �20.78
2 �20.5 �20.57 �20.69 �20.5
3 �20.71 �20.14 �20.85 �20.74
4 �20.59 �20.5 �20.54 �20.54
5 �20.71 �19.88 �20.53 �20.51
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According to the S/N ratios, optimum coded parameter combination is found as GN (2); PS(5);CR(1) and MR(2). The
uncoded levels are calculated as GN (300); PS(100); CR(0:1); and MR(0:1).

Another well-known design of experiment technique is the 2k factorial design, as mentioned previously. The factor
levels for 2k design are determined as given in Table 10. By using the two-level factorial design for the four factors, the
design composed of 16 experiments is obtained and displayed in Table 11, and the average FVs are calculated for each
parameter combination.

Mathematical model was based on 2k factorial design for correlating responses, such as the parameters. GN ; PS ; CR

and MR, with various settings of the process parameters considered in the experimental design, have been established
and is represented in the Equation (15) as follows:

Table 11. 2k factorial design and simulation results for average FV.

Experiment
number

Run
order

Coded value
Response

GN PS CR MR

Average
FV

1 1 �1 �1 �1 �1 13.9733
2 2 1 �1 �1 �1 12.3377
3 3 �1 1 �1 �1 9.9266
4 4 1 1 �1 �1 10.9129
5 5 �1 �1 1 �1 13.4973
6 6 1 �1 1 �1 11.2922
7 7 �1 1 1 �1 9.7846
8 8 1 1 1 �1 11.8925
9 9 �1 �1 �1 1 12.9618
10 10 1 �1 �1 1 9.7963
11 11 �1 1 �1 1 9.4492
12 12 1 1 �1 1 9.6476
13 13 �1 �1 1 1 11.7615
14 14 1 �1 1 1 13.8808
15 15 �1 1 1 1 10.3125
16 25 1 1 1 1 10.2736

Figure 4. Optimisation results for the GN ;PS ;CR and MR for 2k factorial design.
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FV ¼ 11:3563� 0:1021GN � 1:0813PS þ 0:2306CR � 0:3459MR þ 0:5088GNPS þ 0:3500GNCR � 0:0088GNMR

þ 0:0603PSCR � 0:0084PSMR þ 0:3161CRMR � 0:2394GNPSCR � 0:3581GNPSMR þ 0:2810GNCRMR

� 0:235PSCRMR � 0:4508GNPSCRMR (15)

Optimisation analysis was performed to achieve the target value of FV that is given in Equation (1). Obtained opti-
mum parameter settings are presented in Figure 4.

The current coded optimal process parameter settings for achieving the targeted FV of FV ¼ 9 are
GN (�1);PS(1);CR(�1), and MR(1). The uncoded values are calculated as GN (50);PS(100);CR(0:1) and MR(0:25),
respectively. The response is optimised at the above parametric combination with desirability (d) of 0.5508 (55.08%),
and optimised response value of FV is calculated as 9:4492.

The computational results (station numbers) for test problem 8 with the optimum parameter levels are calculated as
15 stations for both Taguchi method and 2k factorial design. Results indicate that RSM is more efficient with 14 stations
as mentioned before in Table 6.

4. Discussion

As can be seen from Table 6, GA, with proposed parameters calculated by using RSM, has found 14 work stations for
test problem 8 and this result is equal or better than previous works for medium-sized benchmark problem of Vilarinho
and Simaria (2002). Furthermore, for the mentioned test problem, obtained solution by proposed method in this paper is
equal to the theoretical lower bound of total workstations (LBpmix). Results demonstrate that without using any hybrid-
isation, the obtained solution by only optimising the parameters of pure GA with RSM is better than the solutions of
Kilbridge & Wester, Moodie & Young (Phase I), RPWT, Pure GA and SA of Vilarinho and Simaria (2002). Addition-
ally, the obtained result equals to the result obtained from hybrid GA of Akpinar and Bayhan (2011). The proposed GA
parameters, which are given in Table 4, may be used as the best parameters set for test problem 8 for the future
researches.

Similarly, further experiments are carried out to solve other MMALBP-I test problems in Table 5 using proposed
procedures with optimised parameters. The obtained total number of required station numbers for each test problem is
given in the RSM-GA column in Table 12.

Table 12. Comparison of obtained results (station numbers) for test problems.

# Problem LBpmix

Kilbridge &
Wester

Moodie & Young
(Phase I) RPWT

Pure
GA

V&S
(SA)

A&B
(hGA)

RSM-
GA

P1 Bowman 4 4 4 4 4 4 4 4
P2 Bowman 6 9 9 9 8 8 8 8
P3 Gokcen and Erel (1998) 7 8 7 8 7 7 7 7
P4 Gokcen and Erel (1998) 6 7 7 7 7 7 7 7
P5 Mitchel 14 17 16 16 16 16 16 16
P6 Mitchel 13 16 15 17 15 15 15 15
P7 Vilarinho and Simaria

(2002)
14 17 17 18 16 16 16 16

P8 Vilarinho and Simaria
(2002)

14 15 15 15 15 15 14 14

P9 Heskiakof 19 21 21 21 21 21 20 20
P10 Heskiakof 18 21 21 21 20 20 20 20
P11 Sawyer 15 18 18 19 16 16 16 16
P12 Sawyer 17 21 21 20 19 19 19 19
P13 Lutz 1 16 19 19 19 19 19 19 19
P14 Lutz 1 17 21 20 20 19 19 19 19
P15 Gunther 20 25 25 24 24 24 23 24
P16 Gunther 21 26 26 25 25 24 24 24
P17 Kilbridge & Wester 23 27 27 28 25 25 25 25
P18 Kilbridge & Wester 24 31 29 29 28 28 27 27
P19 Tonge 41 50 48 48 45 44 44 44
P20 Tonge 39 48 47 48 45 44 44 45
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Based on the results demonstrated in Table 12, it is clearly seen that the proposed method outperforms three tradi-
tional heuristics (Kilbridge & Wester, Moodie & Young – Phase I, RPWT) and Pure GA. The proposed method pro-
duces better solutions than Pure GA for five test problems, P8, P9, P16, P18 and P19. Moreover, equal solutions are
observed for remaining test problems (P1–P7, P10–P15, P17 and P20). Hence, it can be said that RSM-GA may have a
potential capacity to generate better solutions than Pure GA by only optimising its parameters without using any hybrid-
isation.

In terms of comparison between SA algorithm (Vilarinho and Simaria 2002) and RSM-GA, better solutions are
obtained for three test problems (P8, P9 and P18) while in tie for remaining problems, except P20. Furthermore, the
found solutions are equal to hGA (Akpinar and Bayhan 2011) for 18 test problems, while worse than hGA for only P15
and P20.

To conclude, the present paper demonstrates that by using only RSM, it is possible to obtain better results. The
advantage of using RSM in the present study is obtaining the acceptable results with only running 31 experiments with
100 runs (preferable number of runs may be lower than 100 if the CPU time is quite high) for the given case without
using any hybridisation.

While RSM appears to be quite useful for analysing many simulation problems, it has not received much attention
from practitioners, despite efforts to encourage its application (Safizadeh and Thornton 1984). The results of this study
showed one more time that the RSM is an efficient statistical technique necessary for developing, improving and opti-
mising processes. The application of RSM is quite easy when compared with the other hybridisations mentioned in the
literature. This may provide convenience to the researchers.

5. Conclusions

The aim of this paper is to search the effect of parameter optimisation on GAs’ performance. For this purpose, RSM is
applied to average FVs of 100 replicates of different parameter combinations for the test problem of Vilarinho and
Simaria (2002) (problem 8, 25 tasks, 3 models, medium-sized problem of MMALBP-I) and best parameter combination
is tried to find. By using the optimal parameters of GA, calculated by response optimiser, it was tested for the men-
tioned problem several times and 14 workstations with alternative task sequences are obtained. The objective was mini-
misation of number of workstations with balanced workload. By the proposed method, the probability of finding good
solutions was increased by 6.67% ((15� 14)/15 = 0.067) for the 8th test problem. Furthermore, a comprehensive experi-
mental design is performed to see the advantages of RSM by comparing the results obtained from RSM with the Tagu-
chi and 2k factorial design methods. Then, to demonstrate the performance of the RSM-GA, 20 test problems from the
literature (given in Table 5) are solved by using RSM-GA, and results are compared with existing results in the relevant
literature. The results presented in this study obviously show that the proposed approach based on RSM can successfully
be used for the fast and easy design of the optimal parameter levels of GA for MMALBP-I. Also, according to the
results, it is clearly observed that the solution quality of the traditional GA was improved.
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Appendix 1. Obtained alternative solutions/task sequences (or chromosomes) for test problem 8 (25 tasks – 3 models) are
given in following tables

Table A1. Alternative solution-1.

Task 1 3 7 2 4 6 5 8 9 14 11 10 13
Station 1–2 1–2 1–2 3 3 3 4–5 4–5 4–5 6 6 7 7
tA 4.1 4.6 11.3 2.7 4.1 0 2.0 7.8 0 5.1 3.9 3.5 2.5
tB 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 10.0 5.1 4.2 3.5 2.3
tC 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 10.0 5.1 3.9 3.3 2.5
tAverage 4.1 4.6 11.3 2.7 4.1 1.3 2.0 7.8 6.7 5.1 4.1 3.5 2.4

Task 16 18 19 12 17 20 21 22 15 23 24 25
Station 7 8 9 10 10 11 12 12 13 13 13 14
tA 3.5 8.5 9.9 1.0 6.8 7.2 4.8 3.8 3.5 2.9 3.5 7.8
tB 3.5 8.5 9.9 1.0 6.8 7.2 4.8 3.8 3.5 2.8 3.5 7.8
tC 3.4 9.6 9.9 1.0 6.8 7.2 4.8 3.9 3.5 2.6 3.5 7.8
tAverage 3.5 8.7 9.9 1.0 6.8 7.2 4.8 3.8 3.5 2.8 3.5 7.8
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Table A2. Alternative solution-2.

Task 1 3 7 5 2 4 8 6 9 10 11 13 14
Station 1–2 1–2 1–2 3 3 3 4–5 4–5 4–5 6 6 6 7
tA 4.1 4.6 11.3 2.0 2.7 4.1 7.8 0 0 3.5 3.9 2.5 5.1
tB 4.1 4.6 11.3 2.0 2.7 4.1 7.8 2.0 10.0 3.5 4.2 2.3 5.1
tC 4.1 4.6 11.3 2.0 2.7 4.1 7.8 2.0 10.0 3.3 3.9 2.5 5.1
tAverage 4.1 4.6 11.3 2.0 2.7 4.1 7.8 1.3 6.7 3.5 4.1 2.4 5.1

Task 16 18 17 20 21 22 12 19 15 23 24 25
Station 7 8 9 10 11 11 11 12 13 13 13 14
tA 3.5 8.5 6.8 7.2 4.8 3.8 1.0 9.9 3.5 2.9 3.5 7.8
tB 3.5 8.5 6.8 7.2 4.8 3.8 1.0 9.9 3.5 2.8 3.5 7.8
tC 3.4 9.6 6.8 7.2 4.8 3.9 1.0 9.9 3.5 2.6 3.5 7.8
tAverage 3.5 8.7 6.8 7.2 4.8 3.8 1.0 9.9 3.5 2.8 3.5 7.8

Table A3. Alternative solution-3.

Task 1 3 7 2 4 5 6 8 10 11 13 9 14
Station 1–2 1–2 1–2 3 3 3 4 4 5–6 5–6 5–6 7 7
tA 4.1 4.6 11.3 2.7 4.1 2.0 0 7.8 3.5 3.9 2.5 0 5.1
tB 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 3.5 4.2 2.3 10.0 5.1
tC 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 3.3 3.9 2.5 10.0 5.1
tAverage 4.1 4.6 11.3 2.7 4.1 2.0 1.3 7.8 3.5 4.1 2.4 6.7 5.1

Task 12 16 17 21 22 18 19 20 15 23 24 25
Station 7 7 8 9 9 10 11 12 13 13 13 14
tA 1.0 3.5 6.8 4.8 3.8 8.5 9.9 7.2 3.5 2.9 3.5 7.8
tB 1.0 3.5 6.8 4.8 3.8 8.5 9.9 7.2 3.5 2.8 3.5 7.8
tC 1.0 3.4 6.8 4.8 3.9 9.6 9.9 7.2 3.5 2.6 3.5 7.8
tAverage 1.0 3.5 6.8 4.8 3.8 8.7 9.9 7.2 3.5 2.8 3.5 7.8

Table A4. Alternative solution-4.

Task 1 3 7 2 4 5 9 8 6 12 14 10 11
Station 1–2 1–2 1–2 3–4 3–4 3–4 3–4 5 5 6 6 6 7
tA 4.1 4.6 11.3 2.7 4.1 2.0 0 7.8 0 1.0 5.1 3.5 3.9
tB 4.1 4.6 11.3 2.7 4.1 2.0 10.0 7.8 2.0 1.0 5.1 3.5 4.2
tC 4.1 4.6 11.3 2.7 4.1 2.0 10.0 7.8 2.0 1.0 5.1 3.3 3.9
tAverage 4.1 4.6 11.3 2.7 4.1 2.0 6.7 7.8 1.3 1.0 5.1 3.5 4.1

Task 13 16 18 20 17 21 22 19 15 23 24 25
Station 7 7 8 9 10 11 11 12 13 13 13 14
tA 2.5 3.5 8.5 7.2 6.8 4.8 3.8 9.9 3.5 2.9 3.5 7.8
tB 2.3 3.5 8.5 7.2 6.8 4.8 3.8 9.9 3.5 2.8 3.5 7.8
tC 2.5 3.4 9.6 7.2 6.8 4.8 3.9 9.9 3.5 2.6 3.5 7.8
tAverage 2.4 3.5 8.7 7.2 6.8 4.8 3.8 9.9 3.5 2.8 3.5 7.8

Table A5. Alternative solution-5.

Task 1 3 7 2 4 5 8 6 10 11 13 9 16
Station 1–2 1–2 1–2 3 3 3 4 4 5–6 5–6 5–6 7 7
tA 4.1 4.6 11.3 2.7 4.1 2.0 7.8 0 3.5 3.9 2.5 0 3.5
tB 4.1 4.6 11.3 2.7 4.1 2.0 7.8 2.0 3.5 4.2 2.3 10.0 3.5
tC 4.1 4.6 11.3 2.7 4.1 2.0 7.8 2.0 3.3 3.9 2.5 10.0 3.4
tAverage 4.1 4.6 11.3 2.7 4.1 2.0 7.8 1.3 3.5 4.1 2.4 6.7 3.5

Task 14 17 18 19 20 21 22 12 15 23 24 25
Station 7 8 9 10 11 12 12 12 13 13 13 14
tA 5.1 6.8 8.5 9.9 7.2 4.8 3.8 1.0 3.5 2.9 3.5 7.8
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tB 5.1 6.8 8.5 9.9 7.2 4.8 3.8 1.0 3.5 2.8 3.5 7.8
tC 5.1 6.8 9.6 9.9 7.2 4.8 3.9 1.0 3.5 2.6 3.5 7.8
tAverage 5.1 6.8 8.7 9.9 7.2 4.8 3.8 1.0 3.5 2.8 3.5 7.8

Table A6. Alternative solution-6.

Task 1 3 7 2 5 4 9 8 6 10 14 11 13
Station 1–2 1–2 1–2 3–4 3–4 3–4 3–4 5 5 6 6 7 7
tA 4.1 4.6 11.3 2.7 2.0 4.1 0 7.8 0 3.5 5.1 3.9 2.5
tB 4.1 4.6 11.3 2.7 2.0 4.1 10.0 7.8 2.0 3.5 5.1 4.2 2.3
tC 4.1 4.6 11.3 2.7 2.0 4.1 10.0 7.8 2.0 3.3 5.1 3.9 2.5
tAverage 4.1 4.6 11.3 2.7 2.0 4.1 6.7 7.8 1.3 3.5 5.1 4.1 2.4

Task 16 17 18 20 19 12 21 22 15 23 24 25
Station 7 8 9 10 11 12 12 12 13 13 13 14
tA 3.5 6.8 8.5 7.2 9.9 1.0 4.8 3.8 3.5 2.9 3.5 7.8
tB 3.5 6.8 8.5 7.2 9.9 1.0 4.8 3.8 3.5 2.8 3.5 7.8
tC 3.4 6.8 9.6 7.2 9.9 1.0 4.8 3.9 3.5 2.6 3.5 7.8
tAverage 3.5 6.8 8.7 7.2 9.9 1.0 4.8 3.8 3.5 2.8 3.5 7.8
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