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Abstract: In this study, we present a new regression control chart which is able 
to detect the mean shift in a production process. This chart is designed for 
autocorrelated process observations having a linearly increasing trend. Existing 
approaches may individually cope with autocorrelated and trending data. The 
proposed chart requires the identification of trend stationary first order 
autoregressive (trend AR(1)) model as a suitable time series model for process 
observations. For a wide range of possible shifts and autocorrelation 
coefficients, performance of the proposed chart is evaluated by simulation 
experiments. Average correct signal rate and average run length are used as 
performance criteria. 
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1 Introduction 

1.1 General overview 

Control charts are statistical process control tools used to determine whether a process is 
in-control. Since the first control chart has been proposed by Shewhart (1931), lots of 
charts have been developed and then improved to be used for different process data. In its 
basic form, a Shewhart control chart compares process observations with a pair of control 
limits. For developing a Shewhart chart two assumptions are to be made: 

1 process data are independently distributed 

2 the distribution function underlying process data is normal. 

The most frequently reported effect on control charts of violating such assumptions is the 
erroneous assignment of the control limits. Alwan and Roberts (1988) showed that about 
85% of a sample of 235 control chart applications displayed incorrect control limits 
(Pacella and Semeraro, 2007). More than half of these displacements were due to 
violation of the independence assumption. Misplacement of control limits was due to 
serial correlation (i.e., autocorrelation) in the data. However, many processes such as 
those found in refinery operations, smelting operations, wood product manufacturing, 
waste-water processing and the operation of nuclear reactors have been shown to have 
autocorrelated observations. 

In the literature three general approaches are recommended for autocorrelated data: 

1 fit ARIMA model to data and then apply traditional control charts such as Shewhart, 
CUSUM, EWMA to process residuals 

2 monitor the autocorrelated observations by modifying the standard control limits to 
account for the autocorrelation 

3 eliminate the autocorrelation by using an engineering controller (Montgomery, 1997; 
Testik, 2005). 

On the other hand, if independent process data exhibit an underlying trend due to 
systemic causes, usually control charts based on ordinary least squares (OLS) regression 
are used for monitoring and control. In chemical processes linear trend often occurs 
because of settling or separation of the components of a mixture. They can also result 
from human causes, such as operator fatigue or the presence of supervision. The 
traditional Shewhart control chart with horizontal control limits and a centerline with a 
slope of zero have been proven unreliable when systemic trend exists in process data. A 
device useful for monitoring and analysing processes with trend is the regression control 
chart. Rather than using standard Shewhart charts, practitioners typically implement 
regression based control charts to monitor a process with systemic trend (Utley and May, 
2008). 

1.2 Literature review 

A regression based control chart which is the combination of the conventional control 
chart and regression analysis was first proposed by Mandel (1969). Mandel (1969) used 
regression control chart to monitor the variety of postal management problems. This chart 
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is designed to control a varying (rather than a constant) average, and assumes that the 
values of the dependent variable are linearly (causally) related with the values of the 
independent variable. However, since Mandel’s regression control chart was developed 
for independent data, it is not an effective tool for monitoring process shift in correlated 
process observations. 

Mandel also devised a simplification of the regression control chart. The 
simplification functioned as a residual chart because the values that were plotted on it 
were the residuals from the regression analysis (Utley and May, 2009). Zhang (1984) 
adopted Mandel’s idea of a residual control chart for statistical process control data in the 
cause selecting chart (CSC). The CSC is constructed for an outgoing quality 
characteristic only after it has been adjusted for the effect of incoming quality 
characteristic. Hawkins (1991) developed a procedure called regression adjustment. The 
scheme essentially consists of plotting univariate control charts of the residuals from each 
variable obtained when that variable is regressed on all the others (Montgomery, 2009). 
A very important application of regression adjustment occurs when the process has a 
distinct hierarchy of variables, such as a set of input process variables and a set of output 
variables. Sometimes this situation is called a cascade process. If the proper set of 
variables is included in the regression model, the residuals from the model will typically 
be uncorrelated, even though the output variable exhibited correlation. The regression 
adjustment procedure has many possible applications in chemical and process plants 
where there are often cascade processes with several inputs but only a few outputs, and 
where many of the variables are highly autocorrelated at low lags (Montgomery, 2009). 
Two years later, Hawkins (1993a) applied regression control chart to cascade processes 
and cited CSC as a particularly useful methodology for controlling quality in cascade 
processes. If linear regression is used to model a cascade process, then the values plotted 
on the cause selecting control chart are actually the standardised residuals from the 
regression relationship (Sulek et al., 2006). In the same year, Wade and Woodall (1993) 
reviewed the concepts of the CSC and examined the relationship between the cause-
selecting chart and multivariate Hotelling T2 chart. In their opinion, the cause-selecting 
approach is an improvement over the use of separate Shewhart control charts for each of 
two related quality characteristics. A review of the literature on control charts for 
multivariate quality control (MQC) is given by Lowry and Montgomery (1995), by 
discussing principal components and regression adjustment of variables in MQC. 
Haworth (1996) used a multiple regression control chart to manage software 
maintenance. A quality control tool was developed for managers of complex software 
maintenance processes that can be modelled with a multiple regression model. Kalagonda 
and Kulkarni (2003) proposed a diagnostic procedure called ‘D-technique’ to detect the 
nature of shift. For this purpose, two sets of regression equations, each consisting of 
regression of a variable on the remaining variables, are used to characterise the ‘structure’ 
of the ‘in-control’ process and that of the ‘current’ process. To determine the sources 
responsible for an out of control state, it is shown that it is enough to compare these two 
structures using the dummy variable multiple regression equation. In the same year, 
Omura and Steffe (2003) constructed Mandel’s regression control chart for apparent 
viscosity and average shear rate data. According to the authors, no standardised test 
existed to objectively assess flow behaviour of fluid foods with large particulates. 
Therefore, to monitor the process data using a regression control chart could be useful for 
quality control. In the following year; Shu et al. (2004) studied the run-length 
performance of EWMAREG (EWMA chart for regression residuals) and SheREG 
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(Shewhart chart for regression residuals) with estimated parameters of regression 
equation, and used these charts for monitoring multistage processes where process data 
usually follow a multivariate normal distribution. The authors also studied the run length 
performance of regression control charts. However, Zhang (1984) and Wade and Woodal 
(1993) considered the CSC with sample size one, while the studies about construction of 
cause-selecting charts with sample size greater than one are discussed by Yang (2005) for 
joint x  and e  cause-selecting charts. Yang and Yang (2005) considered the problem of 
monitoring the mean of a quality characteristic x on the first process step, and the mean 
of a quality characteristic y on the second process, in which the observations x can be 
modeled as an ARMA model and observation y can be modelled as a transfer function of 
x since the state of the second process is dependent on the state of the first process. In the 
following year, Yang and Yang (2006) addressed the 2x s−  and 2

ee s−  charts for two 
dependent process steps with over-adjusted means and variances. Sulek et al. (2006) 
examined the CSC as a methodology to monitor and identify potential problem areas in 
an actual cascade service process. The authors utilised the CSC, a type of a regression 
based control chart, as an appropriate methodology for analysing the performance of a 
downstream stage in a multistage process by controlling the effect of performance in the 
upstream stage. Yang and Su (2007) constructed an adaptive sampling interval Zx control 
chart to monitor the quality variable produced by the first process step, and used the 
adaptive sampling interval Ze control chart to monitor the specific quality variable 
produced by the second process step. Asadzadeh et al. (2008) reviewed CSC for 
monitoring and diagnosing multistage processes. The following year, Asadzadeh et al. 
(2009) proposed a robust CSC to monitor multistage processes where outliers are 
presented in historical dataset. In the same year, Yang and Chen (2009) constructed the 
variable sampling interval (VSI) 2x s

Z Z−  and 
2e

e sZ Z− control charts in order to 

effectively monitor the quality variable produced by the first process step with incorrect 
adjustment and the quality variable produced by the second process step with incorrect 
adjustment, respectively. When the residual terms are not normally distributed, an 
alternative method for estimating the regression line is needed. One alternative method is 
the least absolute value (LAV) regression model. In contrast to the OLS approach, which 
minimises the sum of the squared residuals, the LAV model minimises the sum of the 
absolute values of the residuals. Utley and May (2009) proposed a control chart 
methodology for residual control charts that is based on LAV regression. Tsai and Chen 
(2009) monitored the stencil printing process using a modified regression residual control 
chart. 

Jarrett and Pan (2009) suggested multivariate methods for the construction of quality 
control charts for the control and improvement of output of manufacturing processes.  
Ben Khediri et al. (2010) proposed support vector regression which is a non-parametric 
method to construct several control charts that allow monitoring of multivariate  
non-linear autocorrelated processes. Capizzi and Masarotto (2011) develop a control 
chart which integrates the least angle regression algorithm with a multivariate 
exponentially weighted moving average. They combined a variable selection method 
with a multivariate control chart to detect changes in both the mean and variability of a 
multidimensional process with Gaussian errors. Yu and Liu (2011) proposed a logistic 
regression (LR)-based process monitoring model for enhancing the monitoring of 
processes and developed logistic regression probability chart (LRProb chart). Kim et al. 
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(2012) attempted to integrate state-of-the-art data mining algorithms (artificial neural 
networks, support vector regression, and multivariate adaptive regression splines) with 
SPC techniques to achieve efficient monitoring in multivariate and autocorrelated 
processes. The residuals of data mining models were utilised to construct multivariate 
cumulative sum control charts (MCUSUM) to monitor the process mean. 

In addition to autocorrelated or trended observations, many industrial processes give 
such data that exhibit both trend and autocorrelation among adjacent observations. This 
observation has been the motivation for the present work on developing a new regression 
control chart (NRC chart) that cope with autocorrelated observations in which 
observation values increase with respect to time. The NRC chart requires identification of 
trend AR(1) model as a suitable time series model for observations. As it is known, a 
traditional residual chart considers only the current sample when determining the status 
of a process and hence does not provide any pattern-related information. By using NRC 
we are able to monitor current samples of given autocorrelated and trending process 
directly and to observe the progress of the process. 

The rest of the paper is organised as follows. The next section describes a step-by-
step procedure to facilitate practitioners in establishing the NRC chart. In Section 3, an 
illustrative example is given. Performance of the chart is evaluated in Section 4. 
Conclusions are pointed out in Section 5. 

2 Establishing the NRC chart 

An autoregressive process of lag 1, AR(1), is the representative model for autocorrelated 
processes. In an AR(1) process, the current observation is correlated with its previous 
observation. Past studies emphasise the role of AR(1) processes in process control  
(Guh, 2008). An AR(1) model can be expressed as follows:  

1t t tx xξ φ ε−= + +  (1) 

where t is the time of sampling, xt is the sample value at time t, ξ is the constant, φ is the 
autoregressive coefficient (–1 < φ < 1), and εt is the independent random error term 
(common cause variation) at time t following ( )20,M εσ . Let autocorrelated process 

observations with an increasing linear trend (trend AR(1) process) (Xt) be represented by: 

t tX x dt= +  (2) 

where d is the trend slope and t is the time step (or observation number), and 
autocorrelated and trending process observations (Xt) with a mean shift be depicted by: 

t tZ X μδ= +  (3) 

where δμ is the magnitude of upward mean shift. In this study, our aim is to test for an 
upward shift in the mean of {Zt} by using the NRC chart. If a trend and autocorrelation 
are diagnosed in the data, then the NRC chart is constructed in the following five steps: 

Step 1 Fit a simple linear regression model to the data and calculate the standard 
deviation of the process observations. 
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The centre line of the NRC chart is a simple regression line as is in a conventional 
regression chart and formularised as 0 1

ˆ ˆˆ
t tZ tβ β ε= + +  where Zt is the tth observation, β0 

(intercept) and β1 (slope) refer to unknown coefficients, and their values are determined 
by the method of least squares. εt is assumed to be a random variable with mean zero. We 
let 0β̂  and 1̂β  denote the least squares estimates for β0 and β1 respectively, 

0 1
ˆ ˆZ Tβ β= −  (4) 

1
1

2

1

( )( )
ˆ

( )

N

t
t

N

t

Z Z t T

t T
β =

=

− −

=

−

∑

∑
 (5) 

1 1and

N N

t
t t

Z t
Z T

N N
= == =
∑ ∑

 (6) 

where N represents the sample size and Z  the mean value of Zt. The standard deviation 
of the process σ is estimated by 

2

1

( )
ˆ

1

N

t
t

Z Z

N
σ =

−

=
−

∑
 (7) 

Step 2 Calculate the NRC variation parameter (NRCVP for short) to represent the 
variation in the sample data. 

2
1ˆ

1eNRCVP σ
φ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (8) 

where 

2

1

( )
ˆ

1

N

t
t

e

e e

N
σ =

−

=
−

∑
 (9) 

is the standard deviation of {et} which is the difference between expected and observed 
values of Zt, 

1,t t te Z Zφ −= −  (10) 

and e  is the sample mean of {et} 

1

N

t
t

e
e

N
==
∑

 (11) 
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Step 3 Calculate the time dependent EWMAARZ parameter to widen the control limits 
up. The aim is to obtain an acceptable false alarm rate. 

( )
1

ˆ
EWMAARZ

N

EWMA t
t

N

σ
==
∑

 (12) 

where 
2

( ) ( 1)ˆ ˆ(1 )EWMA t t EWMA teσ α α σ −= + −  (13) 

and (1)ˆ ˆEWMA eσ σ= . During the experiments we conducted, we observed that the NRC 
chart gives better performance for α = 0.80. ˆEWMAσ  is the estimated smoothed standard 
deviation of Zt and shows similar characteristics with the smoothed variance in moving 
centerline EWMA (MCEWMA) chart. 

As can be seen in equation (12), EWMAARZ is affected by the process residuals, and 
implicitly by the autoregressive parameter φ. As depicted in equation (10), residuals get 
larger for φ < 0 and vice versa. 

Step 4 Calculate ( )C C+ −  to widen (narrow) the upper control limit if there is an 
upward (downward) shift in the mean of the process. 

There is an upward (downward) shift in the process mean if ( )C C+ −  continues to get 
larger (smaller). 

( )
1

N

NRC t
t

C
C

N

+

+ ==
∑

 (14) 

( )
1

N

NRC t
t

C
C

N

−

− ==
∑

 (15) 

where 

{ }
{ }

(1) (1) ( )

( )

ˆ0, 0, max[0, ( )] ,

ˆmin[0, ( )]

t
NRC NRC NRC t t o

t
NRC t t o

C C C Z M k

C Z M k

+ − +

−

= = = − +

= − −
 (16) 

where 

2 0
1̂

ˆ 1,2,...,
2

t
o

DM t t Nφ β= + =  (17) 

denotes the target varying mean for process observations at each time step t. In the 
CUSUM control chart, deviations from the constant target mean (μ0) are used to calculate 
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accumulating deviations. In the present paper, with a similar purpose, we use ˆ t
oM  as a 

reference value for the process observations. The distance between each process 
observation and ˆ t

oM  is calculated in each time step t. On the other hand, if we consider 
the conventional regression control chart that is proposed by Mandel, the centre line 
formulated by 0 1

ˆ ˆŷ tβ β= +  also represents the target varying mean. Intercepts show 

difference between ˆ t
oM  and the target varying mean in the Mandel’s regression control 

chart.  

The intercept in ˆ t
oM  is formulated as 2

2
oDφ . Calculations for Do are given in  

Table 1. For positive autocorrelation, because of the nature of the process, a relatively 
large observation at the previous time step tends to be followed by another large value at 
the current time step. NRC adjusts its control limits’ width with respect to the 
autocorrelated process observations by using C +  and C − . For this purpose, NRC takes 
into consideration the sign of autocorrelation and the magnitude of autocorrelation 
coefficient. The functional role of C +  and C − , that are the means of calculated ( )NRC tC+  

and ( )NRC tC−  values, will be given in detail at the following pages. As mentioned before 

( )NRC tC+  and ( )NRC tC−  represent derivations from the target varying mean at each time step 

t. By using C +  and C −  we decrease the width of the control limits. In other words, 
C + and C −  have decreasing effect on the width between upper and lower control limits. 
For weak autocorrelation cases we expect the control limits to get narrower when it is 
compared with the strong autocorrelation. So the calculated values for ( )NRC tC+  and 

( )NRC tC−  are expected to be smaller for strong autocorrelation to get larger control limits. 

As it can be observed from the formulations of ( )NRC tC+  and ( )NRC tC−  that are given in 

equation (16), this can be provided by determining large ˆ t
oM  to get smaller ( )NRC tC+  

values for strong autocorrelation and vice versa. By including the square of 
autocorrelation coefficient in the intercept, it is aimed to have larger (respectively 
smaller) target varying mean when observations are strongly autocorrelated (respectively 
weakly autocorrelated) in order to increase the correct signal rate. 

While calculating ( )NRC tC+  and ( )NRC tC− , we use a slack value k to prevent the inclusion 
of small deviations from the process mean. In the relevant literature, k is often chosen as 
a halfway between the target mean and the out-of-control value of the mean 
(Montgomery, 1997). It is important to select the right value for k since a large value of k 
will allow for large shifts in the mean without detection, while a small value of k will 
increase the frequency of false alarms. For a conventional CUSUM chart, k is selected to 
be equal to 0.5 σ. During our comprehensive experiments, we observed that the NRC 

gives better performance for .
6

NRCVPk =  

The reason for calculating ( )NRC tC+  and ( )NRC tC−  is similar to that of tC+  (upper 

cumulative sum) and tC−  (lower cumulative sum) statistics in CUSUM chart 
(Montgomery, 1997). The basic purpose of a CUSUM chart is to track the distance 
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between the actual data point and the grand mean. By keeping a cumulative sum of these 
distances, it can be determined if there is a change in the process mean. But, because 

( )NRC tC+  and ( )NRC tC−  display some distinct characteristics from tC+  and tC− , they are time 
dependent, and are not affected from their previous values, and we select the minimum 
value while calculating the ( )NRC tC−  (as depicted in Equation (16)), not the maximum 

value as in the calculation of tC−  (Montgomery, 1997). 

Step 5 Calculate the other parameters required for constructing the NRC. 

These parameters and the formulas used for calculations are given in Tables 1 through 4. 
As can be seen in Table 1 and Table 2, to calculate B, B2, D0 and B3, B4, L, D1, D3, D4 and 
D5, distinct formulas are employed depending on the sign of 0β̂  and of φ. On the other 

hand, signs of both 0β̂  and determine which formulas will be used for 2D+  and 2D− . As 
can be seen in Table 3, if φ > 0, while deciding which formula will be used for D2, 
magnitude of 0β̂  is compared with NRCVPφ . According to our experiments, the NRC 
gives better performance in terms of false alarm rate with the parameters given in  
Tables 1 through 4, and the false alarm probability is lower when 0β̂  and 1̂β  have the 

same sign than when these parameters have opposite signs. Also big values of tC+  
increase the correct alarm rate for upward shift and vice versa.  The magnitude and the 
sign of 0β̂  directly affect the control chart’s performance. If the data have positive 
autocorrelation, unless the shift size is not changed, the performance gets better (worse) 
as the magnitude of positive 0β̂  (negative 0β̂ ) gets bigger, and vice versa for negative 

autocorrelation. It is because the signs of 0β̂  and φ affect the performance of the NRC 
chart that Tables 1 through 4 are arranged in respect of the signs of these parameters. 
Because the NRC chart has several parameters, the design procedure seems to be 
complicated. However, as can be seen in Tables 1 − 4, specifying values for some 
parameters can decrease the number of NRC parameters and reduce the calculation 
complexity. Tables 1–4 show these special cases of the NRC chart. 

Table 1 Parameter calculations according to the sign of 0β̂  

If 0β̂  < 0 If 0β̂ ≥  0 

2 20 0B B+ −= =  2 21 1B B+ −= =  

2

2

ˆ

ˆ

o

o

EWMAARZB
e

EWMAARZB
e

β

β

+

−

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

 

0 0B B+ −= =  

0D NRCVP=  0D NRCVP=  
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Table 2 Parameter calculations according to the sign of φ 

If φ > 0 If φ < 0 

3 31 1B B+ −= =  1 1
3 3

0 0

ˆ ˆ
ˆ ˆ

B Bβ β
φ β φ β

+ −= =  

L = 3.0 L = 1.5 

D1 = 0 D3 = 1 D4 = 1 D5 = 1 2
1 3 4 5

1 3 1.5      D D L D Dφ φ
φ

= = = − =  

4 41 1B B+ −= =  4 4B Bφ φ+ −= =  

Table 3 Parameter calculations for D2 when φ > 0 

0
ˆ 0β >  0

ˆ NRCVPβ φ>  0 0
2

1

ˆ ˆ
( / 2) ˆ( / 2) ( )

CD L
L L NRCVP
β β

φ β

−
+ = +  

  
20 0

2
1

ˆ ˆ
( / 2) 3ˆ( / 2) ( )

CD L C
L L NRCVP
β β φ

φ β

−
− −= + +  

 
0

ˆ NRCVPβ φ≤  2
2 0

ˆ 3 (1 / 3) (1 / )D LC Cφβ φ φ+ − += + −  
  2

2 0
ˆ 3 (1 / 3) (1 / )D LC Cφβ φ φ− − += + +  

0
ˆ 0β ≤   

2 0
ˆ2 ( )D L Cφ β+ −= −  

  
2 0

ˆ2 ( )D L Cφ β− += −  

Table 4 Parameter calculations for D2 when φ < 0 

0
ˆ 0β >  2

0 0 1
2 2 2 2

ˆ ˆ ˆ
( 1 / 3) ( )

( )
C C CD L

L NRCVP
β β β

φφ φ φ

− + −
+ ⎛ ⎞ ⎛ ⎞
= − + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 2

0 0 1
2 2

ˆ ˆ ˆ
( ) 2

( )
C C CD L L

L NRCVP
β β β
φ φ φφ

− − +
− ⎛ ⎞ ⎛ ⎞
= + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

0
ˆ 0β ≤  2 0

ˆ2 ( )D L Cφ β+ −= −  
 

2 0
ˆ2 ( )D L Cφ β− += −  

Step 6 Calculate control limits and the center line. 

Control limits and the centre line of the NRC chart are regression lines as given below. 

Center line: 

0 1
ˆ ˆ

tCL tβ β= +  (18) 

Upper control limit (UCL): 
2

3 5
4 2 2( )

tt UCLpre
D D CUCL Y L NRCVP B Dφ

φ

+
+ += + + −  (19) 

where 
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2 0 1 1 3 1
ˆ ˆ ˆˆ

tUCLpreY B B D B EWMAARZ tβ φ β σ φ β+ + += + + + +  (20) 

Lower control limit (LCL): 
2

4 5
4 2 2( )

tt LCLpre
D D CLCL Y L NRCVP B Dφ

φ

−
− −= − − +  (21) 

where 

2 0 1 1 3 1
ˆ ˆ ˆˆ

tLCLpreY B B D B EWMAARZ tβ φ β σ φ β− − −= − − − − +  (22) 

We use the simple linear regression equation with intercept ( 0β̂ ) and slope ( 1̂β ) to 
represent the centre line of the NRC. We also noted that if a relatively low observation 
from the autocorrelated process at the previous time step tends to be followed by another 
low value at the current time step, and a relatively large observation at the previous time 
step tends to be followed by another large value at the current time step, then this type of 
behaviour is indicative of positive autocorrelation. Naturally, the direct contrary is 
indicative of negative autocorrelation. So the pattern on control chart varies according to 
the sign of the autocorrelation. To adjust control limits of the NRC and consequently to 
provide a high correct signal rate, the calculations show disparities according to the 
combinations of the signs of intercept ( 0β̂ ) and autocorrelation coefficient (φ). For 
positive autocorrelation wider control limits are needed. The control limits’ width should 
be narrower as the magnitude of positive autocorrelation coefficient decreases. For 
negative autocorrelation, control limits’ width should be narrower with respect to the case 
of positive autocorrelation, and when strong negative autocorrelation exists it should be 
larger compared with the limits for weak negative autocorrelation. Control limits of the 
NRC are also affected from the magnitude and the sign of 0β̂ . 

To adjust continuously the distance between the centre line and upper control limit 
due to the variations in observations that stem from the effect of autocorrelation, the 
parameters 4β

+  and L are employed. For a negative autocorrelation, with the effect of 

4β
+ , control limits get narrower while the autocorrelation decreases. If there is positive 

autocorrelation between process observations, then 4β
+  has no effect on control limits. 

Parameters 2D+ , D3 and D5 are also used to reflect the effect of deviations of observations 

from target varying mean with the combined effect of autocorrelation. The effect of 2D+  

on upper control limit varies according to the signs of 0β̂  and φ. For a positive strong 

autocorrelation, if the sign of 0β̂  is positive then the upper control limit will be wider 

than when 0β̂  is negative. This effect begins to turn in direct contradiction with the 
decreasing autocorrelation between process observations. If there is a strong negative 
autocorrelation and if the sign of 0β̂  is positive then the upper control limit will be 

narrower than when 0β̂  is negative. The same effect continues for the decreasing 
negative autocorrelation from strong to weak with less impact. D3 and D5 decrease the 
width of upper control limit for negative autocorrelation since they have no impact on it 
for positive autocorrelation cases. Another parameter that is used for determining the 
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width of upper control limit is Pr tUCL eY , which changes with respect to t. For Pr tUCL eY , by 

using parameters β +  and 2β
+ , we take into consideration the effect of smoothed standard 

deviation of the shifted process that depends on exponentially weighted residuals 
(EWMAARZ for NRC). The sign of 0β̂  affects the width of the control limits. This 

effect is reflected in the calculations of Pr tUCL eY  by β +  and 2β
+ . By considering the 

magnitude of 0β̂  and exponentially weighted residuals, control charts’ upper limit gets 

narrower for negative 0β̂  values while it gets wider for positive values. By using D1 and 

3B+ , combined effect of autocorrelation and exponentially weighted residuals are added 

to the mathematical formulation of upper control limit. D1 and 3B+  show disparities 
according to the sign of the autocorrelation coefficient φ. Pr tUCL eY  has an effect on 

determining the width of the upper control limit by reflecting the combined effect of 
exponentially weighted residuals as regards the signs of 0β̂  and φ. The same approaches 
are employed in the calculations of the lower limit of the NRC given in equations 21–22. 

3 Design implications 

Figure 1 and Figure 2 display the NRC chart for 3.0σ and 0.5σ mean shifts, respectively. 
In these figures while the dashed line represents the shifted process, unshifted process is 
indicated by a solid line. To illustrate how this chart signals, we computerised the design 
procedure of the chart with MATLAB 7.4.0, and applied it to a sample of 500 
observations generated using equation (3). The design of the chart for these sample data 
was completed in 0.64s (less than 1s) of CPU time on a personal computer (AMD turion, 
1.79 GHz, 2.87 GB RAM). To model assignable causes, a shift is added in the mean of Zt 
in equation (3) starting at observation 51. The parameter values employed for building 
the chart, degree of serial correlation, magnitudes of the mean shifts added to the 51st 
observation, and run length results (the average number of points before an out-of-control 
signal is observed) are listed in Table 5. As can be seen in Figures 1–2, the chart gives 
out-of-control signals at time steps 11 and 19 after the mean shift occurs. 

Figure 1 The NRC chart for the 3.0σ shift (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

   250 A.D. Karaoglan and G.M. Bayhan    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 The NRC chart for the 0.5σ shift (see online version for colours) 

 

Table 5 Parameter values and the run length results for the illustrative example 

Parameter 0.5σ 3.0σ 

φ  0.95 0.95 

L 3.0 3.0 

1̂β  0.1768 0.1976 

0β̂  6.9341 19.0294 

X1 10.2000 10.2000 

e  2.7054 3.6066 

NRCVP 6.6163 6.7144 

C +  7.5301 15.9814 

C −  3.9357 0.7747 

EWMAARZ 5.0509 5.6830 

Run length  19 11 

4 Performance of the NRC chart 

In this section, we evaluate the average correct signal rate and the simulated average run 
length (ARL) performance of the NRC chart using the following design parameters ξ = 0, 
X1 = 10, ε ~ N(0,4), N = 500, and d = 0.2. 

To investigate the performance, we generated data sets using equation (3), as we did 
in Section 3, and employing a wide range of possible shifts and autocorrelation 
coefficients. Each data set involves 500 observations. A shift is added in the mean of Zt in 
(3) starting at observation 51. The considered shift magnitudes and autocorrelation 
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coefficients are δμ = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and φ = 0.95, 0.475, –0.475, –0.95, 
respectively. For the sake of simplicity, we classified shift magnitudes in three groups as 
small (δμ = 0.5, 1.0), moderate (δμ = 1.5, 2.0), large (δμ = 2.5, 3.0), and autocorrelation 
coefficients as weak (φ = 0.475, –0.475) and strong (φ = 0.95, –095). For each dataset 
1,000 simulation replications are performed. Simulation results are explained in detail 
below. 

If the test statistic of a shifted process does not fall between the control limits or the 
test statistic of an unshifted process falls between the control limits it is said that the 
control chart’s signal is correct (Montgomery, 1997). In this context, we computed the 
average correct signal rates for several shift-autocorrelation combinations, which are 
displayed in Table 6. As can be seen from this table, signals of the chart are thoroughly 
accurate for all shift magnitudes in the presence of strong and weak negative 
autocorrelation. Its correct signal rate is also very good for large shift-positive 
autocorrelation combinations. 

Table 6 Average correct signal rate 

                                  φ 

μδ  
(0.95) (0.475) (–0.475) (–0.95) 

0.0 0.8310 0.9350 1.0000 0.9990 

0.5 0.3475 0.5833 1.0000 0.9965 

1.0 0.5101 0.7547 1.0000 0.9981 

1.5 0.6159 0.8105 1.0000 0.9984 

2.0 0.6876 0.8132 1.0000 0.9986 

2.5 0.7388 0.8803 1.0000 0.9988 

3.0 0.7675 0.9180 1.0000 0.9989 

The simulated ARL performance of the NRC chart is shown in Table 7. In this table, 
ARL for δμ = 0.0 indicates ARL0, in-control performance of the chart. We can see that 
the chart has large in-control ARL but small out-of-control ARL. That is, when the 
process has no mean shift the ARL is very large, and when a mean shift occurs the ARL 
decreases to indicate the occurrence of the mean shift quickly (Winkel and Zhang, 2004; 
Zhang, 2000). Consequently, we can say that the proposed chart has an ARL performance 
of what a desirable chart should have. About the overall ARL performance of the NRC 
chart we can say that it performs well for large shifts, and shows its best ARL 
performance for negative autocorrelation cases. For small and moderate shifts its ARL 
performance is good for strong autocorrelation. 

For the residuals of given dataset, the simulated ARLs were also estimated for widely 
used residual charts; X, CUSUM and EWMA charts. For the X chart and EWMA chart  
3-sigma and 2.5-sigma control limits are used respectively. Smoothing constant (λ) is 
selected as 0.05 for EWMA chart. For the CUSUM chart, the decision interval with  
h = 4.77 and k = 0.5 was used (for details see Lucas and Saccucci, 1990; Hawkins, 
1993b; Montgomery, 1997; Montgomery, 2009). 
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Table 7 ARL performance of the NRC 

φ Mean 
shift 

EWMA residual 
L=2.5 
λ = 0.05 

X residual 
L = 3 

CUSUM 
residual 
k = 0.5 

h = 4.77 

NRC 

0.95 0.0 343.9 370.5 372.6 388.3 

 0.5 290.3 335.9 308.1 46.6 

 1.0 204.1 260.2 200.2 34.3 

 1.5 110.7 135.2 122.4 13.7 

 2.0 66.7 12.9 76.8 9.6 

 2.5 44.2 3.5 50.8 3.2 

 3.0 29.4 1.3 35.5 1.2 

0.475 0.0 363.2 370.5 371.2 411.4 

 0.5 117.6 248.8 119.2 212.6 

 1.0 29.5 113.7 32.9 182.1 

 1.5 11.4 43.6 11.9 41.7 

 2.0 7.6 22.7 7.5 36.4 

 2.5 5.4 4.6 5.5 8.1 

 3.0 3.6 4.1 3.8 3.6 

–0.475 0.0 379.0 370.5 368.4 449.0 

 0.5 17.9 78.6 18.3 449.0 

 1.0 6.8 12.2 7.1 165.3 

 1.5 6.1 6.1 6.3 17.9 

 2.0 3.8 3.7 4.0 4.4 

 2.5 2.9 1.9 3.6 1.7 

 3.0 2.1 1.4 2.3 1.1 

–0.95 0.0 368.3 370.5 375.5 449.0 

 0.5 11.2 6.7 12.3 57.5 

 1.0 4.2 1.9 4.7 22.9 

 1.5 2.9 1.8 3.1 12.6 

 2.0 2.4 1.7 2.6 7.1 

 2.5 2.1 1.2 2.3 3.6 

 3.0 1.8 1.0 2.2 1.1 

From Table 7, it is clear that when the process is strongly and positively autocorrelated 
NRC outperforms the residual charts for all mean shifts. For weak positive 
autocorrelation ARL performance of the NRC is well and outperforms the residual charts 
for large mean shifts. For small to moderate shifts ARL performance of NRC is 
competitive with the results of X residual chart. For weak negative autocorrelation NRC 
outperforms the residual charts for large mean shifts and its ARL performance is 
competitive with these charts for moderate mean shifts. When the mean shifts are large 
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and the process is negatively and strongly autocorrelated the ARL performance of NRC 
is good and competitive with the residual charts. X, CUSUM and EWMA residual charts 
take into account the residuals from the current sample data while determining the status 
of a process and hence do not provide any pattern-related information. However, by using 
the NRC, practitioners will be able to monitor current samples of an autocorrelated and 
trending process directly and to observe the progress of the process. 

5 Conclusions 

In this article, we propose a new regression chart (the NRC chart) for detecting shifts in 
the mean of production processes. This chart can handle data in which observations are 
both autocorrelated and their values linearly increase with respect to time. The chart 
requires the identification of trend AR(1) model as a suitable time series model for 
process observations. This is one of the highlights of this paper while it is also the 
limitation of this study at the same time. 

The average correct signal rate and ARL performance of the chart were investigated 
by simulation approach. Based on the results of simulation, it is safe to say that the NRC 
is a considerably powerful chart. As is known, no single control chart will give optimal 
performance across a wide variety of situations (Lu and Reynolds, 1999). In this sense, 
we tried to explain when the proposed control chart performs well for several types of 
autocorrelation structures and shift magnitudes. 

As it is known, a traditional residual chart takes into account only the current sample 
when determining the status of a process and hence does not provide any pattern-related 
information. By using the NRC practitioners will be able to monitor current samples of 
an autocorrelated and trending process directly and to observe the progress of the process. 
The NRC can be easily computerised and directly applied to the original data. This is the 
contribution of NRC. This study could be extended for autocorrelated data with 
decreasing trend. For future research, comparing the performance of the NRC with 
alternative approaches to modelling combined effects would be of great interest to us. 

Additionally statistical process control (SPC) and automatic process control (APC) 
are two important methods that have been used for improving product quality and process 
productivity. SPC is used for process monitoring, while APC is used for process 
adjustment. SPC reduces process variability by detecting and eliminating special causes 
of process variation, while APC reduces variability by adjusting the process to keep the 
product variability on target. Both the methods were initially thought to be in conflict 
with each other, but in recent years, many researchers have shown their interest in 
integrating SPC and APC techniques to reduce total variability of the process (Akram et 
al., 2012). As future research integrating NRC with APC techniques may be searched by 
researchers. 
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Abbreviations and notation 

The abbreviations and notations used in this paper are as follows: 

ξ Constant of AR(1) process  

φ Autoregressive coefficient  

ε Random error term  

σe Standard deviation of residuals 
d Trend slope of trend AR(1) process 
Zt Shifted trend AR(1) process variable 

δμ  Magnitude of upward mean shift 
et Residual (difference between expected and observed values of Zt) 
N Sample size 

0β̂  Intercept in a simple linear regression model 

1̂β  Slope in a simple linear regression model  

α Smoothing constant 

σ Standard deviation of a sample from trend AR(1) process  

ˆ t
oM  Estimated target value for process mean at time t 

k Reference value (allowance, or the slack value) 

C +  Mean of deviation above ˆ t
oM  

C −  Mean of deviations below ˆ t
oM  

UCLt Upper control limit for proposed chart at time t 
LCLt Lower control limit for proposed chart at time t 
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