
Chaos, Solitons and Fractals 39 (2009) 2457–2464

www.elsevier.com/locate/chaos
Hypersurfaces satisfying some curvature conditions
in the semi-Euclidean space

Cihan Özgür
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Abstract

We consider some conditions on conharmonic curvature tensor K, which has many applications in physics and
mathematics, on a hypersurface in the semi-Euclidean space Enþ1

s . We prove that every conharmonicaly Ricci-symmetric
hypersurface M satisfying the condition K Æ R = 0 is pseudosymmetric. We also consider the condition K Æ K =
LKQ(g,K) on hypersurfaces of the semi-Euclidean space Enþ1

s .
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Let (M,g) be an n-dimensional, n P 3, differentiable manifold of class C1. The conharmonic curvature tensor K was
defined by Ishii in [14]. K is invariant under the action of the conformal transformations of (M,g) which preserve, in a
certain sense, real harmonic functions on (M,g), and which therefore are called conharmonic transformations. It satisfies
all the symmetry properties of the Riemannian curvature tensor R. There are many physical applications of the tensor K .
For example, in [2], Abdussattar showed that the sufficient condition for a space–time to be conharmonic to a flat space–
time is that the tensor K vanishes identically. A conharmonically flat space–time is either empty in which case it is flat or is
filled with a distribution represented by the energy momentum tensor T possessing the algebraic structure of an electro-
magnetic field and is conformal to a flat space–time [2]. Also he described the gravitational field due to a distribution of
pure radiation in presence of disordered radiation by means of a spherically symmetric conharmonically flat space–time.

In the present study, our aim is to study hypersurfaces, of dimension n P 4, in (n + 1)-dimensional semi-Euclidean
space Enþ1

s whose shape operator A satisfies the condition
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A3 ¼ trðAÞA2 þ bAþ cId ð1Þ
at every point x 2M for some b and c 2 R. We show that if a conharmonically Ricci-symmetric hypersurface M sat-
isfies the condition K Æ R = 0, where R denotes the curvature tensor of M, then M is pseudosymmetric. We also consider
the condition K Æ K = LKQ(g,K) and we obtain that if a hypersurface M, whose shape operator in (n + 1)-dimensional
semi-Euclidean space Enþ1

s is of the form A3 ¼ trðAÞA2 þ bA, satisfies the condition K Æ K = LKQ(g,K) then M is
pseudosymmetric. It can be easily seen that every Einstein pseudosymmetric manifold (M,g) satisfies the conditions
K Æ R = 0 and K Æ K = LKQ(g,K).
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It is known that semi-symmetric manifolds are trivially pseudosymmetric. Semisymmetric space–times were clas-
sified by Petrov in [17]. The classification of pseudosymmetric space–times were given in [13], which are physically
most relevant cases of vacuum, Einstein, perfect fluid, and electromagnetic (non)-null Maxwell fields: every vacuum
Petrov type D space–time with real W2, (where W2 = C1324 and C is the Weyl conformal curvature tensor) with respect
to the principal null tetrad is pseudosymmetric (e.g. the Schwarzschild and Kantowski–Sachs metrics). Every Petrov
type D non-null Maxwell field is pseudosymmetric and also every Petrov type D Einstein space is pseudosymmetric. A
Petrov type N Einstein space–time is pseudosymmetric. Einstein and perfect fluid (e.g., Robertson–Walker) confor-
mally flat space–times are pseudosymmetric. The metrics in the Kinnersley classes I (see [15]) (i.e. the NUT space–
times), II.F, III.A, and IV.A are all pseudosymmetric (see [13]). Hence we conclude that all semi-symmetric Petrov
type space–times or all pseudosymmetric, Einstein Petrov space–times satisfy the conditions K Æ R = 0 and
K Æ K = LKQ(g,K).

It is also known that a conformally flat quasi-Einstein manifold is pseudosymmetric and every three-dimensional
pseudosymmetric manifold is a quasi-Einstein manifold and conversely [9]. The Robertson Walker space–times are
quasi-Einstein manifolds. Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field
equations.

There are many studies about Einstein field equations. For example, in [12], using some almost forgotten concepts
developed by A. Einstein in his quest for a general field theory (see [10]), El Naschie derived the particles content of the
standard model of high energy elementary particles. In [11], possible connections between Gö del’s classical solution of
Einstein’s field equations and E-infinity were discussed.

The paper is organized as follows: In Section 2, we give a brief account of conharmonic curvature tensor, Weyl ten-
sor, pseudosymmetric manifolds and Kulkarni–Nomizu product. In Section 3, we give some informations about hyper-
surfaces of semi-Euclidean space Enþ1

s and the main results of the study are presented.
2. Preliminaries

We denote by $, R, C, K, S and j the Levi–Civita connection, the Riemannian–Christoffel curvature tensor, the
Weyl conformal curvature tensor, the conharmonic curvature tensor, the Ricci tensor and the scalar curvature of
(M,g), respectively. The Ricci operator S is defined by gðSX ; Y Þ ¼ SðX ; Y Þ, where X,Y 2 v(M), v(M) being the Lie
algebra of vector fields on M. Furthermore, the tensor S2 is defined by
S2ðX ; Y Þ ¼ SðSX ; Y Þ: ð2Þ
Next, we define the endomorphisms RðX ; Y Þ, CðX ; Y Þ and KðX ; Y ÞZ of v(M) by
RðX ; Y ÞZ ¼ ½rX ;rY �Z �r½X ;Y �Z;

CðX ; Y ÞZ ¼ RðX ; Y ÞZ � 1

n� 2
X ^SY þSX ^ Y � j

n� 1
X ^ Y

� �
Z;
and
KðX ; Y ÞZ ¼ RðX ; Y ÞZ � 1

n� 2
ðX ^SY þSX ^ Y ÞZ ð3Þ
respectively, where (X ^ Y)Z is the tensor, defined by
ðX ^ Y ÞZ ¼ gðY ; ZÞX � gðX ; ZÞY ;
and Z 2 v(M).
The Riemannian–Christoffel curvature tensor R, the Weyl conformal curvature tensor C and the conharmonic cur-

vature tensor K are defined by
RðX ; Y ; Z;W Þ ¼ gðRðX ; Y ÞZ;W Þ;
CðX ; Y ; Z;W Þ ¼ gðCðX ; Y ÞZ;W Þ;
KðX ; Y ; Z;W Þ ¼ gðKðX ; Y ÞZ;W Þ;
respectively, where W 2 v(M). The (0,4)-tensor G is defined by G(X,Y,Z,W) = g((X ^ Y)Z,W).
For a (0,k)-tensor field T, k P 1, and (0,2)-tensor field A on (M,g) we define the tensors R Æ T, K Æ T, C Æ T and

Q(A,T) by
ðRðX ; Y Þ � T ÞðX 1; . . . ;X kÞ ¼ �T ðRðX ; Y ÞX 1;X 2; . . . ;X kÞ � � � � � T ðX 1; . . . ;X k�1;RðX ; Y ÞX kÞ; ð4Þ
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ðKðX ; Y Þ � T ÞðX 1; . . . ;X kÞ ¼ �T ðKðX ; Y ÞX 1;X 2; . . . ;X kÞ � � � � � T ðX 1; . . . ;X k�1;KðX ; Y ÞX kÞ; ð5Þ

ðCðX ; Y Þ � T ÞðX 1; . . . ;X kÞ ¼ �T ðCðX ; Y ÞX 1;X 2; . . . ;X kÞ � � � � � T ðX 1; . . . ;X k�1;CðX ; Y ÞX kÞ; ð6Þ

QðA; T ÞðX 1; . . . ;X k ; X ; Y Þ ¼ �T ððX ^A Y ÞX 1;X 2; . . . ;X kÞ � � � � � T ðX 1; . . . ;X k�1; ðX ^A Y ÞX kÞ; ð7Þ

respectively, where the tensor X ^ AY is defined by
ðX ^A Y ÞZ ¼ AðY ; ZÞX � AðX ; ZÞY :
If A = g then we simply denote it by X ^ Y.
If the tensors R Æ R and Q(g,R) are linearly dependent then M is called pseudosymmetric. This is equivalent to
R � R ¼ LRQðg;RÞ ð8Þ
holding on the set UR = {x 2MnjQ(g,R) 5 0 at x}, where LR is some function on UR (see [5, Section 3.1]). If R Æ R = 0
then M is called semi-symmetric (see [18]).

If the tensors C Æ C and Q(g,C) are linearly dependent then M is said to have pseudosymmetric Weyl tensor. This is
equivalent to
C � C ¼ LCQðg;CÞ
holding on the set UC = {x 2MjC 5 0 at x}, where LC is some function on UC (see [8]).
The Kulkarni–Nomizu product A êB is given by
ðA êBÞðX 1;X 2;X 3;X 4Þ ¼ AðX 1;X 4ÞBðX 2;X 3Þ þ AðX 2;X 3ÞBðX 1;X 4Þ � AðX 1;X 3ÞBðX 2;X 4Þ
� AðX 2;X 4ÞBðX 1;X 3Þ: ð9Þ
We note that if A = B then we have A ¼ 1
2
A êA, where the (0,4)-tensor A is defined by
AðX 1;X 2;X 3;X 4Þ ¼ AðX 1;X 4ÞAðX 2;X 3Þ � AðX 1;X 3ÞAðX 2;X 4Þ: ð10Þ
Further, for a symmetric (0,2)-tensor A and a (0,k)-tensor T, k P 2, we define their Kulkarni–Nomizu product A êT by
ðA êT ÞðX 1;X 2;X 3;X 4; Y 3; . . . ; Y kÞ ¼ AðX 1;X 4ÞT ðX 2;X 3; Y 3; . . . ; Y kÞ þ AðX 2;X 3ÞT ðX 1;X 4; Y 3; . . . ; Y kÞ
� AðX 1;X 3ÞT ðX 2;X 4; Y 3; . . . ; Y kÞ � AðX 2;X 4ÞT ðX 1;X 3; Y 3; . . . ; Y kÞ ð11Þ
(see [6]). For symmetric (0,2)-tensor fields A and B we have the following identity ([6]):
A êQðB;AÞ ¼ QðB;AÞ: ð12Þ
Note that
g ¼ G: ð13Þ
3. Hypersurfaces

Let M,n = dimM P 3, be a connected hypersurface immersed isometrically in a semi-Riemannian manifold (N ; eg).
We denote by g the metric tensor of M induced from the metric tensor eg. Further, we denote by er and $ the Levi–
Civita connections corresponding to the metric tensors eg and g, respectively. Let n be a local unit normal vector field
on M in N and let e ¼ egðn; nÞ ¼ �1. We can present the Gauss formula and the Weingarten formula of M in N in the
following form:
erX Y ¼ rX Y þ eHðX ; Y Þn; erX n ¼ �AðX Þ
respectively, where X,Y are vector fields tangent to M, H is the second fundamental tensor and A is the shape operator
of M in N and gðAðX Þ; Y Þ ¼ HðX ; Y Þ: Furthermore, for k > 1 we also have that H kðX ; Y Þ ¼ gðAkðX Þ; Y Þ,
trðHkÞ ¼ trðAkÞ, k P 1, H1 = H and A1 ¼A. We denote by R and eR the Riemann–Christoffel curvature tensors of
M and N, respectively.

The Gauss equation of M in N has the following form:
RðX 1;X 2;X 3;X 4Þ ¼ eRðX 1;X 2;X 3;X 4Þ þ eHðX 1;X 2;X 3;X 4Þ: ð14Þ
From now on we will assume that M is a hypersurface in a semi-Euclidean space Enþ1
s . So Eq. (14) turns into
RðX 1;X 2;X 3;X 4Þ ¼ eHðX 1;X 2;X 3;X 4Þ; ð15Þ
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where X1,X2,X3,X4 are vector fields tangent to M and H ¼ 1
2
H êH . From (15), by contraction we get easily
SðX 1;X 4Þ ¼ eðtrðHÞHðX 1;X 4Þ � H 2ðX 1;X 4ÞÞ: ð16Þ
Moreover, contracting (16) we obtain
j ¼ eðtrðHÞ2 � trðH 2ÞÞ: ð17Þ
Now we give the following lemmas which will be used in the main results.

Lemma 3.1 [7]. Let A and D be two symmetric (0,2)-tensors at point x of a semi-Riemannian manifold (M,g). If the

condition
aQðg;AÞ þ cQðA;DÞ þ bQðg;DÞ ¼ 0; a; b; c 2 R; c–0
is satisfied at x, then the tensors A� 1
n trðAÞg and D� 1

n trðDÞg are linearly dependent.

Lemma 3.2 [7]. Any hypersurface M immersed isometrically in an (n + 1)-dimensional semi-Euclidean space Enþ1
s , n P 4,

satisfies the condition
R � R ¼ QðS;RÞ: ð18Þ
Theorem 3.3. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 4. If the shape operator A of M satisfies (1)

and the condition K Æ R = 0 holds on M then M is pseudosymmetric.

Proof. Using the definition of the second fundamental tensor, Eq. (1) can be written as
H 3 ¼ trðHÞH 2 þ bH þ cg: ð19Þ
Let Xh,Xi,Xj,Xk,Xl,Xm 2 v(M). So using (5) we have
ðKðX h;X iÞ � RÞðX j;X k ;X l;X mÞ ¼ �RðKðX h;X iÞX j;X k ;X l;X mÞ � RðX j;KðX h;X iÞX k ;X l;X mÞ
� RðX j;X k ;KðX h;X iÞX l;X mÞÞ � RðX j;X k ;X l;KðX h;X iÞX mÞ: ð20Þ
Then using (3) and (15) we get
ðKðX h;X iÞ � RÞðX j;X k ;X l;X mÞ ¼ aþ a2 þ a3 þ a4;
where
a1 ¼ H klðH ijH 2
hm � H hjH 2

im þ H imH 2
jh � H hmH 2

ijÞ

þ H kmð�H ijH 2
hl þ H hjH 2

il � HilH 2
jh þ HhlH 2

ijÞ

þ H jmðH ikH 2
hl � H hkH 2

il þ HilH 2
hk � H hlH 2

ikÞ

þ H jlð�H ikH 2
hm þ H hkH 2

im � H imH 2
hk þ H hmH 2

ikÞ; ð21Þ

a2 ¼
1

n� 2
½SijRhklm � ShjRiklm þ SikRjhlm � ShkRjilm

þ SilRjkhm � ShlRjkim þ SimRjklh � ShmRjkli�; ð22Þ

a3 ¼
1

n� 2
trðHÞ½H klðgijH

2
hm � ghjH

2
im þ gimH 2

jh � ghmH 2
ijÞ

þ H kmð�gijH
2
hl þ ghjH

2
il � gilH

2
jh þ ghlH

2
ijÞ

þ H jmðgikH 2
hl � ghkH 2

il þ gilH
2
hk � ghlH

2
ikÞ

þ H jlð�gikH 2
hm þ ghkH 2

im � gimH 2
hk þ ghmH 2

ikÞ�; ð23Þ

a4 ¼ �
1

n� 2
½H klðgijH

3
hm � ghjH

3
im þ gimH 3

jh � ghmH 3
ijÞ

þ H kmð�gijH
3
hl þ ghjH

3
il � gilH

3
jh þ ghlH

3
ijÞ

þ H jmðgikH 3
hl � ghkH 3

il þ gilH
3
hk � ghlH

3
ikÞ

þ H jlð�gikH 3
hm þ ghkH 3

im � gimH 3
hk þ ghmH 3

ikÞ: ð24Þ
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Since M satisfies the condition (1), so combining (7), (11), (20)–(24) we have
K � R ¼ H êQðH 2;HÞ � 1

n� 2
QðS;RÞ þ 1

n� 2
kH êQðg;HÞ: ð25Þ
Thus by (12), Eq. (25) turns into
K � R ¼ QðH 2;HÞ � 1

n� 2
QðS;RÞ þ 1

n� 2
kQðg;HÞ: ð26Þ
From (16), since
H 2 ¼ trðHÞH � eS;
using (15) and Lemma 3.2, Eq. (26) can be rewritten as
K � R ¼ �ðeþ 1

n� 2
ÞR � Rþ e

n� 2
Qðg;RÞ: ð27Þ
Since the condition K Æ R = 0 holds on M, by (27), the tensors R Æ R and Q(g,R) are linearly dependent.
This completes the proof of the theorem. h

Definition 3.4 [16]. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 4. If K Æ S = 0 then M is called con-

harmonically Ricci-symmetric.

Using the above definition we have the following theorem:

Lemma 3.5. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 4. If M is conharmonically Ricci-symmetric then

there is a real valued function k on M such that
H 3 ¼ trðHÞH 2 þ kH þ 1

n
½�ktrðHÞ � trðHÞtrðH 2Þ þ trðH 3Þ�g: ð28Þ
Proof. Let Xh,Xi,Xj,Xk 2 v(M). So using (5) we have
ðK � HÞðX h;X i; X j;X kÞ ¼ �HðKðX j;X kÞX h;X iÞ � HðX h;KðX j;X kÞX iÞ ð29Þ
and similarly
ðK � H 2ÞðX h;X i; X j;X kÞ ¼ �H 2ðKðX j;X kÞX h;X iÞ � H 2ðX h;KðX j;X kÞX iÞ: ð30Þ
Then by making use of (3), (7) and (15) we get
K � H ¼ e
n� 2

½ðn� 3ÞQðH ;H 2Þ � trðHÞQðg;H 2Þ þ Qðg;H 3Þ� ð31Þ
and
K � H 2 ¼ eQðH ;H 3Þ þ 1

n� 2
e½�trðHÞQðH ;H 2Þ � trðHÞQðg;H 3Þ þ Qðg;H 4Þ�: ð32Þ
Since M is conharmonically Ricci-symmetric by the use of (16) we have
K � S ¼ eðtrðHÞK � H � K � H 2Þ ¼ 0: ð33Þ
Thus substituting (31) and (32) into (33) we obtain
�QðH ;H 3Þ þ trðHÞQðH ;H 2Þ þ 1

n� 2
½�trðHÞ2Qðg;H 2Þ þ 2trðHÞQðg;H 3Þ � Qðg;H 4Þ� ¼ 0: ð34Þ
Hence from (34), by a contraction we have
� 1

n� 2
H 4 ¼ 1

nðn� 2Þ ½�ðnþ 2ÞtrðHÞH 3 þ 2trðHÞ2�H 2 þ 1

n
½�trðH 3Þ þ trðHÞtrðH 2Þ�H þ ½�trðHÞ2trðH 2Þ

þ 2trðHÞtrðH 3Þ � trðH 4Þ�g: ð35Þ
So substituting (35) into (34) we get
� 1

n
trðHÞQðg; trðHÞH 2 � H 3Þ þ QðH ; trðHÞH 2 � H 3Þ þ 1

n
�trðH 3Þ þ trðHÞtrðH 2Þ
� �

Qðg;HÞ ¼ 0:
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Then by Lemma 3.1, the tensors
trðHÞH 2 � H 3 � trðHÞtrðH 2Þ � trðH3Þ
n

g

and
H � 1

n
trðHÞg
are linearly dependent, which proves the lemma. h

Hence by combining Theorem 3.3 and Lemma 3.5 we have the following theorem:

Theorem 3.6. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 4. If M is conharmonically Ricci-symmetric

and the condition K Æ R = 0 holds on M then M is pseudosymmetric.

Example 3.7. Let S
2 ¼ fp 2 R3 such that jpj = 1} be the standard unit sphere. First consider
M4 ¼ S2
1 � S2

2 ¼ fðp; qÞ 2 R6 ¼ R3 � R3 such that jpj ¼ jqj ¼ 1g:
Next we take the cone
C5 ¼ fðtp; tqÞ 2 R6 such that jpj ¼ jqj ¼ 1; t 2 Rg:
In [1], the authors show that the principal curvatures of C5 are 0; 1ffiffi
2
p

t
; 1ffiffi

2
p

t
;� 1ffiffi

2
p

t
;� 1ffiffi

2
p

t

� �
and the cone C5 is Ricci-semi-

symmetric, but not semi-symmetric.
It can be easily seen that the cone C5 satisfies the conditions K Æ S = 0, K Æ R = 0 and it is pseudosymmetric.

Now we consider hypersurfaces, of dimension P4, in (n + 1)-dimensional semi-Euclidean space Enþ1
s whose shape oper-

ator A satisfies the condition
A3 ¼ trðAÞA2 þ bA: ð36Þ
at every point x 2M.

Proposition 3.8. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 3, satisfying the condition (36). Then the

Ricci tensor S of M has the following property:
S2 ¼ �ebS: ð37Þ
Proof. Using the definition of the second fundamental tensor, Eq. (36) can be written as
H 3 ¼ trðHÞH 2 þ bH : ð38Þ
So by the use of (2) we get
S2 ¼ H 4 � 2trðHÞH 3 þ trðHÞ2H 2: ð39Þ
Hence applying (38) and (16) into (39), we obtain (37). h

Using (3) and (7) we easily obtain the following proposition.

Proposition 3.9. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 4. Then we have the following identity:
Qðg;KÞ ¼ Qðg;RÞ þ 1

n� 2
QðS;GÞ: ð40Þ
Lemma 3.10. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 4, satisfying the condition (36). Then the fol-

lowing relation is fulfilled on M
K � K ¼ n� 3

n� 2
R � Rþ be

n� 2
Qðg;RÞ � eb

ðn� 2Þ2
QðS;GÞ: ð41Þ
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Proof. Let Xh,Xi,Xj,Xk,Xl,Xm 2 v(M). So using (5) we have
ðKðX h;X iÞ � KÞðX j;X k ;X l;X mÞ ¼ �KðKðX h;X iÞX j;X k ;X l;X mÞ � KðX j;KðX h;X iÞX k ;X l;X mÞ
� KðX j;X k ;KðX h;X iÞX l;X mÞÞ � KðX j;X k ;X l;KðX h;X iÞX mÞ: ð42Þ
Then by making use of (3), (11) and Proposition 3.8, similar to the proof of Theorem 3.3 we get
K � K ¼ R � R� 1

n� 2
QðS;RÞ þ b

n� 2
H êQðg;HÞ � eb

ðn� 2Þ2
g êQðS; gÞ:
But from (18) and (12) we have
K � K ¼ R � R� 1

n� 2
R � Rþ b

n� 2
Qðg;HÞ � eb

ðn� 2Þ2
QðS; �gÞ:
So using (13) and (15) we obtain (41). h

Now we investigate hypersurfaces in a semi-Euclidean space Enþ1
s , n P 4, satisfying the condition K Æ K = LKQ(g,K),

where LK is some function on UK = {x 2Mj K50 at x}.
Hence by the use of Lemma 3.10 we have the following characterization:

Theorem 3.11. Let M be a hypersurface in a semi-Euclidean space Enþ1
s , n P 4, satisfying the condition (36). If the

condition K Æ K = LKQ(g,K) holds on M then M is pseudosymmetric.

Proof. By the use of (40), Eq. (41) can be written as
K � K þ be
n� 2

Qðg;KÞ ¼ n� 3

n� 2
R � Rþ 2be

n� 2
Qðg;RÞ:
But since the condition K Æ K = LKQ(g,K) holds on M the last equation implies n�3
n�2

R � Rþ 2be
n�2

Qðg;RÞ ¼ 0, which gives
us M is pseudosymmetric. h
4. Conclusions

As a generalization of semi-symmetric spaces, pseudosymmetric spaces have been studied by many mathematicians.
It has also some physical applications. In this study, we give new conditions of pseudosymmetry type spaces which have
some examples as some of Petrov space–times and quasi-Einstein manifolds.
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