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a b s t r a c t

In this paper, a novel approach is presented for optimization of sliding mode controller parameters. The
main purpose is to optimize sliding surface slope and thickness of the boundary layer.
The tuning of the electrical drive controller is a complex problem due to the many non-linearities of the
machines, power converter and controller. Therefore, it is difficult to develop mathematical models of the
system accurately because of unknown and unavoidable parameter variations due to saturation temper-
ature variations and system disturbance. To solve that problem artificial neural network (ANN) is used.
That is, the whole system is modeled by using ANN. Then, sliding surface slope and thickness of the
boundary layer is optimized using genetic algorithms. The proposed method is applied to an induction
motor. Experimental results verify that the proposed control approach is very good for complex and
non-linear systems.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

With the well-known merits of reliability, simple construction
and low weight, AC induction motors (IMs) have been gradually
utilized in place of DC motors with drawbacks of spark, corrosion
and necessity of maintenance (Leonhard, 1996). Moreover, because
of the advances in power electronics and microprocessors, IM
drives used in variable speed and position control have become
more attractive in industrial processes such as robot manipulators,
factory automations and transportation applications. However, IMs
have more complexities in control characteristics than DC motors
due to their coupled and nonlinear time-varying dynamics. In the
past years, many techniques for the control of IMs have been inves-
tigated (Benchaib, Rachid, & Audrezet, 1999; Ho & Sen, 1988; Jan-
sen, Lorenz, & Novotny, 1994; Leonhard, 1996). Among them, the
field-oriented control is the most popular one. With the technique
of field orientation, the rotor speed is asymptotically decoupled
from rotor flux, and the speed is linearly related to torque current.
Thus, the IM possesses the same behavior of a separately excited
DC motor (Leonhard, 1996). In general, the field-oriented control
performance is sensitive to the deviation of motor parameters, par-
ticularly the rotor time-constant (Moreira & Lipo, 1993; Schauder,
1992). To deal with this problem, there are many flux measure-
ment and estimation mechanisms in the published literature (Jeon,
Oh, & Choi, 2002; Moreira & Lipo, 1993; Schauder, 1992).
ll rights reserved.
Indirect field-oriented techniques are now widely used for the
control of IM in high-performance applications. With this control
strategy, the decoupled control of IM is guaranteed, and can be
controlled and provide the same performance as achieved from a
separately excited DC machine. However, the control performances
of the resulted linear system are still influenced by the uncertain-
ties, which usually are composed of unpredictable parameter vari-
ations, external load disturbances. Therefore, in order to solve
some of the problems of field-oriented control, the motor drive
must be techniques that are appropriate to discontinuous opera-
tion of the switching devices and allow the robustness of the algo-
rithm, with regard to changing parameters and external
disturbances. This common drawback can be overcome by using
variable structure control (VSC) (Wai, Lin, & Lin, 2004). The essen-
tial property of VSC is that the discontinuous feedback control
switches on one or more manifolds in the state space. Ideally, the
switching of control occurs at infinitely high frequency to elimi-
nate deviations from sliding manifolds. In practice, the frequency
is not infinitely high due to the finite switching time and with ef-
fects of unmodeled dynamics, cause undesired chattering of the
control (Sarwer, Rafiq, Data, Ghosh, & Komada, 2005).

The sliding mode control (SMC) can offer good properties, such
as insensitivity to parameter variations, external disturbance rejec-
tion, and fast dynamics response. However, in SMC, the high
frequency chattering phenomenon that results from the discontin-
uous control action is a severe problem when the state of the
system is close to the sliding surface (Wai et al., 2004).

SMC is one of the effective nonlinear robust control approaches
since it provides system dynamics with an invariant property to
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uncertainties once the system dynamics are controlled in the slid-
ing mode (Slotine & Li, 1991). In recent years, there are many SMC
systems for AC servo drives in the opening articles (Lin, Chiu, &
Shyu, 1998; Park & Lee, 1998; Shiau & Lin, 2001; Utkin, 1993).
However, the insensitivity of the controlled system to uncertain-
ties exists only in the sliding mode, but not during the reaching
phase (Wai, 2000). That is, the system robustness can not be main-
tained in the whole control process. To overcome this problem, one
effective way is to speed up the period of reaching phase via a lar-
ger control gain. However, it will result in excessive chattering
control efforts and may excite high-frequency unstable dynamics.
Though the concept of a boundary layer can be introduced to im-
prove this phenomenon, the control accuracy will be reduced
and the stability within the boundary layer can not be guaranteed.
To keep robustness in the whole sliding-mode control system, sev-
eral researchers have focused on eliminating the effect of the
reaching phase (Bartolini, Ferrara, Usai, & Utkin, 2001; Slotine &
Li, 1991).

The most common approach to alleviate the effect of chattering
is the so-called ‘‘boundary layer” control (Chang, Twu, & Chang,
1992; Zhang & Barton, 1991), in which the sign function is replaces
by some smooth approximation when the state trajectory lies
within a suitable boundary layer of the switching surface. Unfortu-
nately as pointed out in Young, Utkin, and Ozguner (1999), this
method solves the problem only verifies that the proposed control
scheme has the advantage of partially, because, within the bound-
ary layer, the system no longer behaves as a variable structure sys-
tem (Sarwer et al., 2005). If the boundary layer chosen is very small
then under some operating conditions chattering may re-occur.
Alternatively, if the boundary layer chosen is large then chattering
is completely eliminated. However, a large boundary layer results
in slow system response and therefore degrades the dynamic per-
formance of the system (Zhang & Barton, 1991).

It is a basic fact that the system performance is sensitive to the
sliding surface slope C for SMC application. For instance, if large
values of C are considered then the system will give a fast response
in SMC application due to the large values of the control signal but
the system may become unstable. Conversely, if small values of C
are chosen the system will be more stable but the performance
of the system may degrade since the system response will become
slower due to small values of the control signal (Eksin et al., 2002).

Thus, determination of an optimum C value and thickness of the
boundary layer for a system is an important problem. These prob-
lems may be solved by determining the optimum sliding surface
slope and optimum boundary layer width.

System model is necessary for tuning controller coefficients in
an appropriate manner (e.g. percent overshoot, settling time).
But, in most applications the mathematical model cannot repre-
sent the physical system exactly because of neglecting some
parameters. Therefore, the controller coefficients cannot be tuned
appropriately. In recent years, the use of artificial neural networks
(ANNs) for identification and control of nonlinear dynamic systems
in power electronics and ac drives have been proposed (Burton,
Harley, Diana, & Rodgerson, 1998; Mondal, Pinto, & Bose, 2002),
as they are capable of approximating wide range of nonlinear func-
tions to a high degree of accuracy (Karanayil, Rahman, & Grantham,
2007). The electric drive controller is a complex problem due to the
many non-linearities of the machines, power converter and con-
troller. Therefore, the whole system model can be obtained by
using the ANN.

Genetic Algorithm (GA) is used for optimization of sliding sur-
face slope and boundary layer width. GAs is based on an analogy
to the genetic code in our own DNA (deoxyribonucleic acid)
structure, where its coded chromosome is composed of many
genes (Goldberg, 1989; NG et al., 1995). GA approach involves
a population of individuals represented by strings of characters
or digits. Each string is, however, coded with a search point in
the hyper search-space. From the evolutionary theory, only the
most suited individuals in the population are likely to survive
and generate off-spring that passes their genetic material to
the next generation. The GA used in this paper known as the
simple genetic algorithm. In the algorithm, the three-operator
GA with only minor deviations from the original is used (Dimeo
& Lee, 1995).

In this way, the performance of the overall system using the
proposed method is improved with respect to the classical SMC.

This paper is organized as follows. In Section 2, Vector con-
trolled IM is described. Section 3 details ANN and GA. In Section
4, sliding mode control of IM is reported. The experimental setup
is shown in Section 5. Modeling and optimization process is ex-
plained in Section 6. Results and discussion are submitted in Sec-
tion 7. The conclusion is given the last section.

2. Vector controlled induction motor

The main objective of the vector control of IM is, as in DC ma-
chines, to independently control the torque and the flux; this is
done by using a d–q rotating reference frame synchronously with
the rotor flux space vector (Lorenz & Lawson, 1988) as shown in
Fig. 1, the d axis is aligned with the rotor flux space vector. Under
this condition,

w�rq ¼ 0 and w�rd ¼ w�r

In an asynchronous squirrel cage IM the mechanical speed of
the rotor is slightly less than the rotating flux field. The difference
in angular speed is called slip and is represented as a fraction of the
rotating flux speed. Park and Inverse Transforms require an input
angle h. The variable h represents the angular position of the rotor
flux vector. The correct angular position of the rotor flux vector
must be estimated based on known values and motor parameters.
This estimation uses a motor equivalent circuit model. The slip re-
quired to operate the motor is accounted for in the flux estimator
equations and is included in the calculated angle. The flux estima-
tor calculates a new flux position based on stator currents, the ro-
tor velocity and the rotor electrical time constant. In this study, this
implementation of the flux estimation is based on the motor cur-
rent model and in particular these three equations can be written
as follows:

Magnetizing current;

Imr ¼ Imr þ
T
Tr
ðId � ImrÞ ð1Þ

Flux speed;

fs ¼ ðnp � nÞ þ
1

Trwb

Iq

Imr

� �
ð2Þ

Flux angle;

h ¼ hþwb � fs � T ð3Þ

where Imr: magnetizing current (as calculated from measured
values); fs: flux speed (as calculated from measured values); T: sam-
ple (loop) time (parameter in program); n: rotor speed (measured
with the shaft encoder); Tr: rotor time constant (must be obtained
from the motor manufacturer); h: rotor flux position (output vari-
able from this module); xb: electrical nominal flux speed (from mo-
tor name plate); np: number of pole pairs (from motor name plate).

During steady state conditions, the Id current component is
responsible for generating the rotor flux. For transient changes,
there is a low-pass filtered relationship between the measured
Id current component and the rotor flux. The magnetizing current,
Imr, is the component of Id that is responsible for producing the



Fig. 1. The overall vector-controlled induction motor drive system.
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rotor flux. Under steady-state conditions, Id is equal to Imr. Eq. (1)
relates Id and Imr. This equation is dependent upon accurate
knowledge of the rotor electrical time constant. Essentially, Eq.
(1) corrects the flux producing component of Id during transient
changes.

The computed Imr value is then used to compute the slip fre-
quency, as shown in Eq. (2). The slip frequency is a function of
the rotor electrical time constant, Iq, Imr and the current rotor
velocity. Eq. (3) is the final equation of the flux estimator. It calcu-
lates the new flux angle based on the slip frequency calculated in
Eq. (2) and the previously calculated flux angle. If the slip fre-
quency and stator currents have been related by Eq. (1) and Eq.
(2), then motor flux and torque have been specified. Furthermore,
these two equations ensure that the stator currents are properly
oriented to the rotor flux. If proper orientation of the stator cur-
rents and rotor flux is maintained, then flux and torque can be con-
trolled independently. The Id current component controls rotor flux
and the Iq current component controls motor torque. This is the key
principle of indirect vector control.

In general, the mechanical equation of an IM can be represented
as

J _xrðtÞ þ BxrðtÞ þ T l ¼ Te ð4Þ

where xr is the rotor angular speed; J is the total mechanical mo-
ment inertia constant; B is the total damping coefficient; Tl is the
torque of external load disturbance; Te denotes the electromag-
netic torque. With the implementation of field-oriented control
(Leonhard, 1996), the electromagnetic torque can be simplified
as

Te ¼ Kti
�
qs ð5Þ

With the torque constant Kt is defined

Kt ¼ ð3np=2ÞðL2
m=LrÞ i�ds

where np is the number of pole pairs; Lm is the magnetizing induc-
tance per phase; Lr is the rotor inductance per phase referred to sta-
tor; i�ds and i�qs denote the flux and torque current commands.
Substituting Eq. (5) into Eq. (4), the mechanical dynamic of the IM
drive system can be represented as
_xrðtÞ ¼ �
B
J
xrðtÞ þ

Kt

J
i�qs �

T l

J
ð6Þ

or

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ CTl ð7Þ

where xðtÞ ¼ xrðtÞ; A ¼ �B=J; C ¼ �1=J;uðtÞ ¼ i�qs is the control ef-
fort. Though the dynamic behavior of the IM is like that of a sepa-
rately excited DC motor, the control performance of the IM is sill
influenced seriously by the system uncertainties including electrical
and mechanical parameter variation, external load disturbance,
non-ideal field-oriented transient responses and unmodeled
dynamics in practical applications (Karanayil et al., 2007).

3. ANN and GA

Multi-layer perceptrons (MLPs) are the simplest and therefore
most commonly used neural network architectures. The backprop-
agation algorithm is the most commonly adopted MLP training
algorithm. The backpropagation neural network is the most popu-
lar feedforward predictive network deployed in process industries.
The backpropagation network assumes that all processing ele-
ments and connections are somewhat responsible for the differ-
ence between the expected output and the actual output
(GARCIA, 2007). This type of neural network is known as a super-
vised network, because it requires a desired output in order to
learn. The goal of this type of network is to create a model that cor-
rectly maps the input to the output using historical data. The mod-
el can be used to produce the output when the desired output is
unknown. The ANN model structure of the system is shown in
Fig. 2, where f, C, and / are fitness function and C–/ coefficients,
respectively.

There was no criterion to select cell number at every layer of the
ANN structure; layer number and cell number were determined
with experiment. In the same way, the learning and momentum
coefficients were determined by experiences at previous studies.

GAs are search algorithms that use operations found in natural
genetic to guide through a search space (NG et al., 1995). GAs use a
direct analogy of behavior. They work with a population of chro-
mosomes, each one representing a possible solution to a given



Fig. 2. The ANN model structure of the system.
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problem. Each chromosome has assigned a fitness score according
to how good solution to the problem it is. GA is theoretically and
empirically proven to provide robust search in complex spaces,
giving a valid approach to problem requiring efficient and effective
searching (Cordon & Herrera, 1995; Velasco & Magedalena, 1995).

Any GA starts with a population of randomly generated solu-
tions, chromosomes, and advances toward better solutions by
applying genetic operators, modeled on the genetic processes
occurring in nature. In each generation, relatively good solutions
reproduce to give offspring that replace the relatively bad solutions
which die. An evaluation or fitness function plays the role of the
environment to distinguish between good and bad solutions. The
process of going from the current population to the next popula-
tion constitutes in the execution of GA. Although there are many
possible variants of simple GA, the fundamental underlying mech-
anism operates on a population of chromosomes and consists of
three operations:

� Evaluation of individual fitness,
� Formation of gene pool (intermediate population)
� Recombination and mutation.

The next procedure shows the structure of a simple GA (Hazzab,
Khalil Bousserhane, & Kamli, 2004).

Structure of standard genetic algorithm

� Begin (1)
� t = 1
� Initialize Population(t)
� Evaluate fitness Population(t)
� While (Generations < Total Number) do
� Begin (2)
� Select Population(t+1) out of Population(t)
� Apply Crossover on Population(t+1)
� Apply Mutation on Population(t+1)
� Evaluate fitness Population(t+1)
� t = t + 1
� End (2)
� End (1)

A fitness function must be devised for each problem to be
solved. Given a particular chromosome, a solution, the fitness func-
tion returns a single numerical fitness, which is supposed to be
proportional to the utility or adaptation of the individual which
that chromosome represents.
In GAs, a crossover operator combines the features of two par-
ent structures to form two similar offspring. It is applied with a
probability of performance, the crossover probability. A mutation
operator arbitrary alters one or more components of a selected
structure so as to increase the structural variability of the
population. Each position of each solution vector in the popula-
tion undergoes a random change according to a probability de-
fined by a mutation rate, the mutation probability (Hazzab et
al., 2004).

4. Sliding mode control of induction motor

Let us consider that a class of nonlinear system is defined as

_xðtÞ ¼ f ðxÞ þ bðxÞuðtÞ ð8Þ

Here xðtÞ ¼ ½x; _x; x; . . . ; €xðn�1Þ�T is the state vector of the system, u(t)
are the control inputs, b(x) is an (n�1)x1 unknown control vector
function and f(x) is an (n�1)x1 unknown nonlinear dynamic vector
function.

The desired state vector can be defined as xdðtÞ ¼
½xd; _xd; €xd; . . . ; xðn�1Þ

d �T. The tracking error is defined as eðtÞ ¼
xdðtÞ � xðtÞ, and the tracking error vector be defined as

eðtÞ ¼ xdðtÞ � xðtÞ ¼ ½e; _e; €e; . . . ; eðn�1Þ�T ð9Þ

The design of SMC involves two tasks. The first one is to select
the sliding surface S(t) for prescribing the desired dynamic charac-
teristics of the controlled system. The second one is to design the
discontinuous control such that the system enters the sliding sur-
face S(t) = 0 and retains in it forever.Most of the sliding surfaces are
defined as

SðtÞ ¼ cTeðtÞ ð10Þ

where c ¼ ½c1; c2; ::::cn�1; cn�T is chosen such that cn = 1 and the coef-
ficients c1,c2,...,cn�1 are describing the dynamics of the sliding sur-
face S(t) = 0 Sarwer et al., 2005.

The most commonly cited approach to reduce the effects of
‘‘chattering” has been the so called piecewise linear or smooth
approximation of the switching element in a boundary layer of
the sliding manifold (Slotine & Sastry, 1983). Inside the boundary
layer, the switching function is approximated by a linear gain. In
order for the system behavior to be close to that of the ideal sliding
mode, particularly when a significant unknown disturbance is to
be rejected, sufficiently high gain is needed.

The vector controlled IM model can be expressed by Eq. (11)

_xr ¼
1
J
ðKti

�
qs � T l � BxrÞ ð11Þ

€xr ¼
Kt

Js
u� B

J
_x ð12Þ

where the integration constant of control action s is represented.
Since Tl is considered to be constant, it does not appear in (12).
The variable state representation can be simplified as follows:

x1 ¼ xr �xref ð13Þ

x2 ¼ _x1 ð14Þ

_x1

_x2

� �
¼

0 1
0 �a

� �
x1

x2

� �
þ

0
b

� �
l ð15Þ

where a ¼ B=J ; b ¼ Kt=J � s.
The trajectory, which the SMC forces the system to slide along,

is a straight line described in Eq. (16)

s ¼ Cx1 þ x2 ¼ 0 ð16Þ



M. Demirtas / Expert Systems with Applications 36 (2009) 5533–5540 5537
The dynamics described in Eq. (8) is a first-order response with
a defined speed response time constant. Various control laws can
be used to force the system response.

Where C is a strictly positive real number that guarantees the
stability of the sliding motion. Block diagram of the proposed con-
trol system is shown in Fig. 3.

Because of the discontinue component (Signum (s) function) in
SMC, the chattering is unavoidable. One effective solution is to
introduce a boundary layer around the sliding surface (Lin, Shyu,
& Lin, 1999). To eliminate the chattering, usually a boundary layer
is introduced neighboring the sliding surface. The sat(s//) for
boundary layer is written as

satðs=/Þ ¼
sgnðs=/Þ; if js=/jP 1
s=/; if js=/j < 1

�
ð17Þ

where / > 0 represents the boundary layer thickness, sat(s//) is a
saturation function.

It is obvious that, if / P s, (10) is satisfied and the system states
move toward the sliding surface, if |s| < /, the control changes lin-
early and chattering is reduced. But with this boundary introduc-
tion, a steady-state error appears. The smaller / is, the less the
steady-state error is and the more serious the chattering is, and
vice versa. Since the switching term changes continuously, fast dy-
namic response is achieved and the chattering phenomenon is
completely eliminated.

5. Experimental setup

The experimental setup consisted of a motor and generator. The
motor used was a 0.55 kW, 1.34 A, 50 Hz, cosh = 0.84, three phase
squirrel-cage IM. The processor used in this work was a
7.38 MHz dsPIC30F6010 Digital Signal Processor Controller (DSP
Controller). The processor communicated with the PC via USB port.
The block diagram of this application circuit is shown in Fig. 4. The
stator voltage and frequency were adjusted using a Space Vector
PWM (SVPWM) technique.

Error is calculated from difference between reference speed and
actual speed taken from incremental encoder. Then, PI generates
Fig. 3. Block diagram of the p

Fig. 4. The block diagram of
new control data according to this error. Amplitude and speed val-
ues are generated using the control data. Required values for PWM
output of the DSP controller are calculated by using two values
(amplitude and speed) and SVPWM technique. PWM time base is
200 ls for this application. The control loop is carried out once dur-
ing each 10 PWM time base. Dead time is formed by the controller.
The value of dead time determined by a register is taken 7 ls. The
DSP controller program for the control process was written in
dsPIC30F6010 assembly language and C30 language. Controlling
and compiling process were performed by a compiler program.

6. Modeling and optimization

The ANN model used is a multi-layer perceptron model, in
which there is more than one layer between input and output.
The backpropogation of the error algorithm used as the training
algorithm is used for training of generalized delta rule. The training
process of this ANN model is shown in Fig. 5.

The used ANN parameters for modeling the system are given in
Table 1.

The system was worked for different C and / coefficients. Max-
imum overshoot and settling time are obtained as experimental.
From this data fitness function is calculated. Data used for the
ANN model of the system is given in Table 2.

Thirty-eight sets of input–output data taken from the applica-
tion circuit are given in Table 2. The coefficients of the ANN are
trained using data in Table 1. Change in the error in training pro-
cess is given in Fig. 6.

As shown in Fig. 7, the error values reduce acceptable values
when iteration number is 12,000. Therefore, the training process
was finished at 12,000 iterations. Then, the best C and / for the
whole system are obtained by using genetic algorithm program.

GAs is based on an analogy to the genetic code in our own DNA
(deoxyribonucleic acid) structure, where its coded chromosome is
composed of many genes (Goldberg, 1989). GA approach involves a
population of individuals represented by strings of characters or
digits. Each string is, however, coded with a search point in the hy-
per search-space. From the evolutionary theory, only the most
roposed control system.

the application circuit.



Fig. 5. The flow chart of training process.

Table 1
The used ANN parameters for modelling the system

Parameter Value

Number of neurones for input layer 2
Number of neurones of the output layer 1
Layer number 1
First layer cell number 6
Second layer cell number –
First layer activation function Sigmoid
Second layer activation function Sigmoid
Maximum iteration number 25,000
Error limit 0.0001
Training coefficient 0.75
Momentum coefficient 0.9

Table 2
Data used for the ANN model of the system

Data set C / =1/(1 + Mo(rpm) +2 * Ts(ms))

1 1 1 0002551
2 1 75 0.002564
3 5 1 0.002632
4 5 75 0.000497
5 5 150 0.002591
6 5 225 0.000498
7 5 300 0.002591
8 5 400 0.000481
9 10 1 0.002639
. . . .
. . . .
37 25 300 0.002786
38 30 400 0.002817

Fig. 6. The error values according to iteration number.

Fig. 7. The flow chart of the GA.

Table 3
Parameters of GA used in the application

Population size 30

Chromosome length 30 bits (15 each for C and /)
Number of generations 100
Selection scheme Combination of Roulette wheel selection and

Elitism
Crossover operator Double point crossover
Crossover probability (crossover

rate)
0.85

Mutation probability (mutation
rate)

0.08

Termination criterion 100 generations

Table 4
Fitness values of the members in the first generation

Parameters Values

Fitness of member 1 0.267399
Fitness of member 2 0.267258
Fitness of member 3 0.266495
Fitness of member 4 0.266342
Fitness of member 5 0.265848
Fitness of member 6 0.265249
Fitness of member 7 0.264923
Fitness of member 8 0.264663
Fitness of member 9 0.264158
Fitness of member 9 0.264258
The best fitness values: 0.267399
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suited individuals in the population are likely to survive and gen-
erate off-spring that passes their genetic material to the next
generation.

The GA used in this paper known as the simple genetic algo-
rithm. In the algorithm, the three-operator GA with only minor
deviations from the original is used (Dimeo et al., 1995). Parame-
ters of GA used in this application are given in Table 3.



Fig. 8. Neuro-genetic SMC.
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Different crossover and mutation rates are used for processing
of optimization of genetic algorithms. Ten of the obtained fitness
values of the members of the first generation are listed from the
largest fitness value to the smallest fitness value, in Table 4. The
flow chart of the GA is shown in Fig. 7.

The optimum values for the C and / were obtained using a com-
puter program written in C++ language for the GA. This process
executes with three different operators at bit level. Thirty-eight
of the C and / were determined at random. Each of C and / con-
sisted of 15 bits. These C and / were entered to ANN model as in-
put. The fitness values were obtained from the ANN outputs. These
values were used as the fitness function.

The one-point crossover method was used on the crossover
operator. Mutual parameters of two random members on the
crossover were divided into two parts and their positions were
changed. A random bit of a random number on the mutation pro-
cess was changed 0–1 and 1–0. For the optimization process, muta-
tion rate is increased when converge occurs in 5–10 generation.
Therefore, early converge is prevented, and in addition, members
that have high fitness values were obtained.

The range of C and / values chosen lay range of (1–30) and (1–
400), respectively. The fitness function is defined as

f ¼ 1
Mo þ 2 � Ts þ 1

ð18Þ
7. Results and discussion

To prove the efficiency of the proposed method, the designed
controller is applied to the control of the IM. A comparison be-
tween the speed responses of IM by conventional SMC and neu-
ro-genetic SMC is presented in Fig. 8. The optimum sliding
surface slope and boundary layer width are found as C = 26, / =
368. Fig. 8 shows the speed response for the optimum C and /.

As shown in Fig. 8, curve 1 demonstrates the speed response for the
optimum C and / (C = 26, / = 368). The second curve indicates the
speed response for selected random C and / (C = 20, / = 150). Curve
3 presents the speed response for the values of C = 1 and / = 400.

This comparison shows clearly that the Neuro-genetic SMC
gives good performance. The controller is applied to the system
when the motor speed is about 1000 rpm. That is, the speed is in-
creased from 1000 rpm to 2000 rpm by using the proposed con-
trollers. The system is worked to 1000 rpm as open-loop control.

8. Conclusion

In this study, the design method of sliding mode with a bound-
ary layer has been presented. The proposed control structure
combines a sliding-mode and a neuro-genetic based controller.
The control dynamics of the proposed hierarchical structure has
been experimentally investigated. This controller has been applied
implemented for IM speed control. The whole system is modeled
using ANN. GA is used for determining of the system parameters
(sliding surface slope and boundary layer width). The experiments
show that the dynamic response of the system using the proposed
controller is better than a classical SMC.
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